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PREFACE T0 THE TEACHER.

,

A

You will find below a rough guide forthe number of weeks which each

chapter is, expected to take.for adekate coverage. Here weeks are assumed to

be full f hve- day weeks without.interruption.' These.'estimates are baSed on the

experience gained by the seventeen teachers who used the boOk during the trial

year. Th :times shown include those needed to cover the corresponding material

in the 1 guage supplements..
.
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'Appendix.A '
.

Appendix B (optional)

Assuming. 15 weeks of uninterrupted inetruction,.it would appear that

either` Chapter 7 or Chapter 8 might be covered with moderate thoroughness

(bat not aith)._

The ROle of Laboratory Work in this Course

1 For max m benefit from this course, the student needs contact with a

computer, primarily for verifying and trouble-shooting the algorithms which he

hasconstructed.\ This laboratory work need not be "hands-on" computer exper-
.

,

- lance, but should be whateverls necessary for adequate testing of programs on

the computer facia t that is chosen for u'se. Hands-on computer experience is

moreno_goal of this cou . Where possible, it should be avoided as there is

than enough substantial material 'of a mathematical nature in this text.

.

1
-
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Many schools already have computers or have them An order. For schools
,

) that have no facilities of their own, (and ven for schools that do),.arrange-

ments wh,,nee,r.by colleges, univeAities, o other .inst.itutio;sfor the 4se of

Irtheir facilities are urgeA. Distances of u to 200 miles from the university .

Or college need not be a prohibitive fLtor. A number of universities will be

installing time-shared:compuBer systems ip;111-erComing years. Arrangements-for

remote tt.ge of,such facilities (espeel'aril.ir in a c4y) via rented teletype or
4

other.teyBoard consoles looks increasingly promising.

Chbice of a Programming Language .
. ,.

Careful and serious study must be.'devoted to'the choice of.a language, a
. , ,.

computer, and a software system. (Software refers to the service prOgrams
.- :4

ased to'operate and exploit the computer,for yourbenefit.) The Best language

is not necessarily measured by the number'of people using it.
- ..

" .7 '1 A
Learning one good programming language maks it very easy to learn another.

If the flowchhrt language in this booktaugh,t 17021, there...' L) FORTRAN,r 4 , .
t ,.. ,--- -A

,
',., MAD, ny simi'lar language cap,0101*n cohlia*aCA. , --%,. v

.
sas the sec -

. . .

. : and languagie;,,CTIO-Wart language aAempts to deal ufththOse concepts of
. . '--

central ini4rest in all programming' languages in a co;lbpxt free of most Of the

syntalpc details associated with a given language. .

Given a choice of -ohe-programming language, such as FORTRAN; one list .

.$

4

still be aware of variations in is implementation on various types of com- .'

puters, Sometimes, even two versions of.FORTRAN for,the-samemachine may diffef

leiaterially.
.

t ,, ,o
,.

-P.

.

6 .
.

The. device wh iich mplements a la ,urge on a given machine is a program

which we call a "processor.': Among th,e,factors that contribute to variation

. inithese processors are '. 1 ti ..

(a) :Size of the'computer (memory'and speed);

. .

(b) plpcessing'sweds--rateat which programs are compiled (or readied
- ,

15y the computer for computation); . ,

. .

.
,- --., 1'

(8)' speed in'executing the computation;, -
) ,

.

. ,

.

. ...

(d) pruessing quality- =some praestors in use still have errors lif,,,
Z1, ..' ')

-theme Some pTotegors prpduce better intermediate fteamentation
.

A
1

p ,than' others;
; , e.

4V. , ,

V ., (e)

,,

error detectilon and recovery--a critical factor is the degree to . '5.-

,i'',..,'which programming and langdage ,errors made by the student or ,..,,., ,.
. , ,

teacher are detected, etearr idehtified, and reported or corrected ..

ti

2 1*/8 -..
. ...
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by the computer.at the time the prograrAisbeing compiled. Fatal
.

programming brrors can also-be detected andsrePorted durihre, execu-

tion of the target (compiled) program. The quality of this repwat-

ing also varies widely depending on the executive system (More

software) which is'teing used. 'Detection of equipment ma1.function

during input/output and of misuse of library subroutines is impor-

tant, and the way these errors are treated,,can be critical, to the

efficiAtirunning'of large numbers of small student problems on a'

computer in a reasonable amount of elapsed tide:

Next in importance to the quality of the programming language is the

question. of access tothe computer and the nature of the tes Anse by the com-

puter. Here one must often choose between'hands-on experie ce dnd remote use.

'_Each technique depends for good results on thegsponse which is obtained'from

the computer system. RespOnse is measured by 7

(a) "turn - around" time;

(b) Ain't and pertinence ofj.nformation received, especially during,

c
error detection and reporting or,recovery.

A computer 100 milep away that is equipped with softWare ideal for school
.-

work may prove to to superior to a small, inadequately supported "hands-on"

computer in.the'next room. -4Tie teacher who, by &mite or necessity uses a

sMall,hams-owned computer must be eognizant of the trade-off bettedhtechnical,

training arid machine-oriented know-how which tends to accrue from.hands-on use

versus the facility that is gained in focusing on programming language, algo-

rj.igeic construction, mathematidal theory and more,realistic insight,into the

use of computers in science, i ustry, and business that can be gained from

Working with a better software system on a remote machine.

-/
.

The Computer Language Supplement

In order to increase he scope of-applicE;bili-p,y of. this book, .the specific

syntactic details of the oMputer language have been split off from the main

flow chart text into a language 'S'upplement. This 'enables the school to choose

b'e'tween,FORTRAN,,,ALGOL, MAD or any other'as the computer language, while still

preserving compatibility concerning the fundamental' concepts that are Common

to most computer langvages. Each supplement is then briefer and easier to

revise as the languages change with time. This way of organizing thp material

also maZs it possible. to write other language supplements for'new programming

I
a

3, 9
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languages. Only three have been prepared by SMSG this time, but these may '"

,be used as models for °theft. ...,

- A direct consequenc6 of this Separation 1 the necessity to learn another
/

. _
language (the flow chart languagefirst. T is is considered an asset, not a

'liability.' You must, however, be prepare to give the student some additional

guidance in correlating his -study of the two pafallel texts.

After he text has been studied, you may, need to:examine reference mate-

rials that deal %with the specific implementations for the language and

machine which You have choken to se. Neither teacher nor student should

read a reference manual as a to . If at all possible, you sLkuld seek the

assistance of capable cdmputer specialists in helping you to identify and in-

terpret the needed information inAhe reference manual.
't ,4

There are a number df commefially available timers, guides, and texts

that deal with FORTRAN, LGOL and MAD: Those available at present are not

generally compatible w'th SMSG mathematical concepts or not aimed at a level

appropriate to the ligh'school aU"Leneg. Some of these may be useful to the

teacher as sources .f problems and illustrations. Better students.can'be

referred to- them ftft acquiring a healthy grasp of the material in the flow

chart text and anguage supplement. e

Organization of the,language supple ents

''.'(a) The'e is no counterpart to Cilpter 1 of.the main text.

apter 2 should be'studied.pnly after completing the counterpart (in its.

entirety) in the main text. Reason--we want to introduce a (small but fot

some purposes complete)flowthart langUage. Then, we introduce its pro=

gramming language equivalent. In this way Ft)RTRAN, ALGOL, MAD or what have

-you; j,s intr*ced as a second lan

(c) Lab Work

Upon completing Chap4Fr 2 of the supplement,Psmall computer programs can

be run as laboratory exer4ses. Todo this certain fill-in information ,

c,
must be conveyed by the teacher.

ge.

1.- HOw to fill-76ut coding.forns'.

.<" 2. How to key,puneh cards or punch'paper tape, etc. /

, .

3. How to prepare decks of c*ds,including I.D. cards;- monitor specifica=
.

. ..

, ,-tion cards, if any. "
r

., /



The teacher is urged to get help from local practitioners on these

details.' Consult reference manuals only as a laA resort.

(d) Subsequentchapters add more language captbility. Each of these can be

read in,onjunction with, i.e., section by section witn, the-main text.
,

. .
-:

/ '(e) ILO details
,

.,-

.
e ,

Format details are ne- cessary in some,Zanguages like FORTRAN. There.is a

risk of-IiiVing too much detail. To solve this problem, the FORTRAN'

supplement offers format details piecemeal- -as neededloeginning'wisth

Chapter 2. May reference manuals are diff+eult toread on this Subject.

-Format in a language like MAD need'hot be taUghtbecause a set of

"simplified" input-oUtput statements'are available which obviates the

need to teach forMat codes and associated details.

Formatin a language like'ALGOL is not treated because as yetno standard.
.

way of handling I/O is part of what is called ALGOL. Computer implemen-

tation of the input-output procedures in ALGOL differ. We must rely on

the teacher be g shown the minimum nebeszary information by .the,,loCal

practitioner. Hopefully the p?.x1,649.F ALGOL implementation, uses .a v

simply I/O scheme inl:folving a minimum of format control or noneat all
, . ., .,..., ,

ow
. ..

. ..
Helping students to debug their programs 4

.
,

v
. .

The literature'on this subject has little formal development of wide
---,applicability. There are so many different software systems that we cantt/

give standard procedures.
.
All we can do is give genarkprineiples.

.(a) Debugging is an itevativ process. The loop includes thell6w chart,.

4e
..'

the'program, sometimes the'data format and the output format and sometimes
,

even.the problem statement, Iteatio'n is a process of refinement, of all

steps in the loop.

(b) To minimize error certain gobd work habitd are essential.

le Be methodical, neat--keep, clear notes on the statement of the prob-;

- lem, assumptions used, and the symbols used and their significance.

Draw a flow chart 'pat eonveys an up to date version oi the algorithm

being tested.

. ,

3. Keep a check-list of simple things to remeMberand use it each time
,

before subRdttingthe program to the computer. The check-list-ton-
-.

sists of a set of sin0Le clerical details and tasks, the violation

of any one of which, however triiia1,, can fault,a computer run.

51i
1.
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n4. Develop the habit 'of 'getting the most useful information from the,

computer.at each, run but not too much detail. think of each run as
. -

a debugging run and insert extra output statements which tan later

be removed with ease.. These output.statements are to print selected

/4
.

valued developed at intermediate points in the computation. Suppose

we findt4that a printed intermediate result is demonstrably. incorrect.

Then we can confine our search for the trouble to that small,section

of the program whith develops this result-incorrectly. It may,be that,

after soMestady of .this section, we still cannot deduce the reason -

for the'er ou.sresult. We may then insert additional output state-'

ments At key 1,6ints within the suspected section of the program and

rerun, hoping fin ly tO pinpoint the incorrect program step.

Pre-Laboratory Planning and Preparation

The teacher has quite,a/few problems to solve before the class beginsits .

.

laboratory work. You must decide: son'

1. How many iii-Ogrems'mill each,steident submit per week, month, semester?
, 0 .

Make -a schedule foF students to follow basedlon turn'around time.

2. Will each -student run all progres or he run selected programs?
r

3. What arrangeMent- s will you mare for card or tape greparAtion time?,

Obviously, you should seek consultation (formal or infOrmal) with univer-

sity crr high sthobl teacher's wflo already have the experience you still need.

Worklbs:A for the Teacher

It should now be fairly apparent that teaching ACM (Algorithms, Compute-

-r tion and Mathematics) as a-regular'tigh school course involves considerably °,
.

more work and time than does the teaching of an ordinary course in high schbol

7mathematics. Until it becomes commonplace for the high school to have its Own

staffed computer labdratory,,the ACM teacher must take on many of the duties

of such a laboratOy staff. Many, of-these activities and responsibilities can

be delegated to .others, hOwever. Teadhers,ha e .experimented by having-the

bette r4Vdents assist with .a number of the lab ratory,dhores, and errands.

Where especially bright students are available, or there eleventh graders are

Aallowed to enr0.1, certaintwelftl-graders can become computer operators,

' graders or assistants for hA.ing others in progrAm debugging. After teaching
.

ACM several times, a "organizing"' it looks. like it would be possible to u-

duce the overload to Ageablepropartions.
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Chapter T1

;
. ALGORITHMS, , LANGUAGE, , AND MACHINES.

4 .

0 , - .,
.. ,

---. ,.........,:,:!,,,-,,, ,. -
---7.

,Sunmitil4y of,Ghapter.I

_ _ Section 1-1, Introduction sketches briefly a few reasons for studying

about computers and the areas where they are being employed to solve problems.
so-

i
,

poweistudents may want to gain a more Complete picture' of computers and, their

impabt on society: We suggest, as utside reeling the Section 11, New York
,

Times, Sunday, April 24, 1966, entitled The Computee'and Society, Six View-

point.1,- ,

N.,
! -. .

Section 1-2 Hfsiory gives a very bi4ief account of some of the develop-
,

.., ....-......
.,7,

-.. ments leadingto,destored program digital elect.1044c computer.
. ..

,.
\'---.- ...ite-

."-:' . ,..in Section 1-3, Some Technical'Aspects of Ninlarays., some of the more/

fl. indamental^ ideas connected with thd organization of computers andthe,method,

of. their operation areAllUstrated with the aid
.

of a hypothetical comre p:uer

, .
SAMOS. The details of the' S'AKOS comi1Sr are in in themsely4s sufficiently

'. Amporta t to warrant learning for retention but are offered only a& a means of.
,

illustrating the more basic ideas that,the hyPothetical"Machineembodies. On
..,

--the'OCcasions
_

when specific details about SAMOS are needed, the student ctpl' .
,,

refer to Appendix A. '

In'SectIon 1-4, Numbers and Other Characters, we see how numerical data(i.e.,
1

the integers and the seals) and alphanumerical data (strings of characters)

might be-represented or "coded" internally, i.e., in memory. The "floatipi-
.

point" coding scheme for, reals is intrOduced. Also, sets of binary codes
.,

.are suggested for alphabets consistin,pf both digits and letters. Finally,,-

ithe memory is viewed astcapaple of storing arbitrary strin f charactersr4
grouped one'or more memo word, depending upon the size or length of the

-,word. . 1
, .

..'4 ' ...

In Section 1-5, Algorithms, we cote to the central topic of this text.
r.,......-

For'I For this course We are interested in. details of actual computers only to the

NZ', extent that they are necessai7 to motivate or explain aspects of -the study of
..-

," algorithmoonatruction. Because it is more itportant, one might' hold that

this' section should precede Section 1-3. 'However, Se-ction.1-3 provides a con-
1

creterbasis for beginning the study of algdr,iiivos, and, after some soul search - r
. i

Sing, the pi.esent order7was'selected, / .

I

4



.
Finally, Section 1-6, Comnitnts on Langua e, points out the need for an

adequate language in which to express algorithms, laying the groundwork for

the study of the flow chart language in Chapterst2 though 5.

Chanter4 is intended primari34 as a reading assignment at the beginnink

of the course to an some general'background knowledge of computers and the

concept,of algorithms. It is hat necessary that the study of this material

build motivation for what fellows., xperienge shows that student interest

automatically heightens upon launching into Chapter 2.

9

You will undoubtedly want to.discuss some of ?the material from Sections .

1-3, 1-4, and 1-5 in class. But certainly,no more than one week should be ;

spent on the entire chapter. We mention this.important point for the obvious

reason that this chapter will seem to raise more questions'that it ans;rs

and lengthy digressioffs can easily result., This is not a "teaching" chapter.
as.are the chapters which follow. Som&' students will want to know much more

about how coMputei's are built or how they wol.k. You might encourage your
0

`.4

better students to read Appendi7A on their own. Many questions on ho* com-
,

puters function will be answered here. Questions on the construction and

organization of computer hardware are considered to be outside the scope of

this course.1,8wever2.a rime reference op this topic for high school students.

is "The'Men'Made World" pUblished 1965 by the ,CoMmdssion'on Engineering

Problems

Only one set of prOlems.cis given but this set should noi,be overlooked. s

... .

.v.

-r

These are'.thefour. ball weighing problems at the end of Example 2 in Section

1-4. 'Solutions to these are given inn following paragraphs. It would be worth-
..,

wi-iile to 'assign 1 and 2 or 3 and,4 as homework. We.Would not recommend more .

.. -,,
oblens at this time. 7

t
. ,:,

,-:.

y-.
1 t .

.

0
Tests -

,

,
We suggest thatno tests, are needed gp the; material in this chapter. If,

wr,

tests are gilieri,..,t44-qu,esi.iOns should bd confitted to matetial on Sections 1-3,

1-0, and



Solutions to the Weighing Problems

Problem)... 4eighing 8 balls.
.

Two solutions tare

P.01.14.1.0a-No.

A flow chart ap oach. Conclusions are subscripted H for

heavy and L for light.

means

> e +f +g,

means
a > f

a:

aH

3.

I

V

: f +

means
c > g

T

c a

a +b+c . e+f+

means
b > e

ly

Means d / h

IT

d h

.c

d : a

means
> eib+c

>71
means

> b

h : a

+ a

e :

(3(Y) 0.cx)

As

b + f
<
means

means f > a
g > c

g : a

t

f

' Strategy

.
I.' Select and ireigh a subset of the Valls and consider the signifibance

.

- ' of the three possible outcomes. If the subset balances, we know that

the remaining balls contain the one we are interested 1n.

2. Once we have isolated apair containing the "odd' ball and, we want to

know if-one of them is heavy or light, we weigh one of thetwo can-
.

didates against any other which -is known to.be "standard".

1

.
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Solution No. 2

Let the balls, be 'A, B, C, E, F, G, H. Weigh the balls

as follows and note results each time:

E, F, G, H

A, B, G C, D, E

1st time

2nd time

A, B, C, D,

k 6

3rd time.

V,

If the left side of a weighing was down, we write L.

A, Q, H
6

D, F

If the right side of a weighing was town, we write

If the sides balanced, we write " = " .

R.

The resultS of every set of three observations (weighingS) can'be coded

as a "triple" or string, of three characterEr'involving "L", "R", or "="1 .

°'y For each of.the listed 16 triples which can result from the above weighing

sequence, we.giliethe associated (unique) conj.usion. (Other.weighing seq-

uences might have been chosen.)

oil

ti

Triple

L L L
RIR

L L R

R R

R L
R L R'

L R R
R

L L
R R

L = L
R =

L R=
R L =

L = Re
R= L

Conclusion

A is heavy
A is light

B is heavy
B is light.

C is heaVy
C is light

D is heavy
p is light,

E is light
E is heavy

F is light,
F is` heavy,

G is light

A
G is heavy

H is light
H is heavy

to' 16

a
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Problem 2. Weighing l2 balls with one kftbwn to be heavier.

Flow Chart SOlution

a :

a+b+c g+h+i

f

S

10-

1

ans

d+ +f / j+k+1

means 'f 1
4

1 .
f 1

Lt.

ti
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Problem No. 3

Flow Chart Solution .

;mans

C> ÷C) +0 g
+'

1 V.

< >

66
'd` 0

.
.

12

, 18 ..
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Problem No. 4: .Weighing 12. balls with one known to he either lighter or

heavier.

4

I

Tabular Solution

Solution: Let the'bal1 be A; Br, 'C, D, E, H, I, J, K', L.

Weigh the balls as follows and note the results.

each .time./

1st weighing

2nd'weighing

3rd weighing

A ;B, C, 15,

A, J, G, I

A, C, H, I

E, F, 0, H

C, D, E, L

p, F, J, K
' S,

,If the left,. side of a weighing was down, we write L.'

If the right side of a weighing was down, we write. R.'

If there was a balance,' we write '1.7.,

If the results.-Were:

L 141, A is heavy
R R',R A is light

= 'B i4eavy
R= a B it 1/tht-

L R L C i s ,heavy

R L R ,C is'light

14 R R D isAheavy
R:14 L D'igwlighb

R = E is heavy
LL= E is light

R,= R F is heavy
L = L F is light,

tiI

R L = p is heavy
, R G , G is light ,'

R = is heavy
L,= H is light

L L , heavy.
R is light

=L>11 -.5 is heavy

=RL jis light

= = R K is heavy
= = L K'is light

= R = L is heayy
= L = L is

i,.

Comment: It can be shown that no more than 12 balls can -be search&

for an "odd ball" 2.- three weighings'even though three other triples fxist s).

of a possible 2T '(= 33) : The-dnUSed-tripleS Eire 7 =;=, L,L R, and R-R L.
,

The = = = would mean that the odd ball is never on the scale.andIthis contra-

dicts the assumption that one of the balls is,differerit. The triples L L R

or R R L also lead to contradictions for the sequence of three weighings we
.

have used: i' ,-
,

P
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Solution .t., the Concentration-Camp Problem
,

. ...
. ._ .

.
. , .

Suppose that you are one of the three prisoners. You will have no ot=
?

jection to a ce40..mate receiving a piece which is,no larger (in your
0

considers-
.

tion) than'his share of thd loaf. " ' ' 1
z.

e

If a piece of the loaf is (in your estimations an exaCtskare, nu should

\be indifferent as to who geV. it.-

'
Our solution will guarantee that b'efore you are servstkno one else will

get a pie which is (in your estimatibn) greater than hi& share and tfiat you
t

Os re

willwill never be stucifwittra piece which (in your estimation) is less than your. .

share . , , _
,

, '

. , ..

.

First the prisoners are numbered in order, 1, 2, and 3. Prisoner No. 1<
cuts off a slice which he claims is 1 theloaf.''He isthen-indiffereni as
to who gets it. This slice is now odereSto the second prisoner. If

%-

. (a) he feels that this slice is no larger thad-a fair share, ,he '
- . 4. ,

rejects it;
i

Y

-....
(b) he feels:that the slice is latger than sr fair share, he trims it to

the "size of a fait share.
.

- .

21.1 either ease (a),or(b) the slit1l is okfered to prisoner 3 who ' v%
%

. ,

either accepltsit or rejects.it., If he regActs it, then it revertS.to the.

last person who has cut or trimmed it.
. 1

...v,
a .

`.1



Chapter .

INPUT, OUTPUT AND ASSIGNMENT

NN

In many respects this is the most important chapter -in the book. Alm%

with the companibn chapter ih the lahAuage_supplement, as much as three weeks

of classroom and quiz meetings may be required. The ptirpose Of grouping the.

three concepts of inpkut, output and assignment in a single chapter (which at

first may seem somewhat ambitious) is two-fOld.

. /First,' input and assignment steps 'are closely related,ir! that both
A

result in the'assigning of values to variables. Moreover, input

. is closely related to output in that one process cap be thought
1

of as the
.,
-reVe-YWhe otker. Hence, all three concepts, input,

/output, and assiNment, seemto be directly or indirectly linked.

Second, when the student completes this chapter'he can draw,flo1( charts '

for many simple but complete algorithms.. Exercises in;.ong,the
, .

construction of some surprisingly interesting algorithA6 ar e
4.

given at tie end of Sections 2-3 and 2-5. Moreover, when the
. ..,

student has completed the study of the companion chapter in the
.

.

These can then be "run" and is ). theon the computer. It isthe

anguage manual,'he can write complete programs for the algorithms. N.

quickest route to laboratory practice. Here, we assume that ,,....,---
...

schools will have access to a computer for running student , 4,40r ,

problems.
0 ,

The chapter outlineds as follows:

-2-1 The Flow Chart! Concept

2-2 ,Repetition

2-3 'Assignment and Variables

2-4 Arithmetic Expressions

2-5 Rounding Functions

2-6 Alphanumeric Data

__,....; ....
. -.7]-..

The discussions of these topics will. be contained in the appropriate sections,

of the chapter.

. t
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2-1 The. Flow Chart Condht
..:

144 illustrate the first flpw chart4in the so- called flow chart lahguage

whicl\is described in this-text (Figure 2-2). A simple problem is used vhicA

r embraces all three basic actions; input, assignment and output. The transition
. *

from a word problem to an algorithm in flqw chart form is illustated. ,

,
.. . . .

A pYeliminary ar initial explanation is given for the three basic actions.

The ideas'of'input and putput are then repeated and elaborated. 'Flow chart
.

t

silhouettes for each of thee actions or events, i.e.,

1

4

for input,

are also discuse.ed in some detail., The start 4nd atop ciles,
. /

41,

dr. e elso introdu..ed.

problems into a Plow chart whose struc

prciblem first illustrated in Figure 1..e 2

severs: times in. this chapter and agai

pcercises are presented in whlh

.from' iis4-atudy.

r

,

4

a

for matput,

he student cbnvers some simple word

ure, he is told, is similar to the

. This figure,

in Chapter 3.-

ti

incidentally, appears ,

A numbet'of ideas stem .

tF
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Answers to Exercises 2-1

- 1.

2:

`'

.

2

41

4

x
2

a

4.

3

P.

11.

"

123
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"4-
2-2 Repetition

The first illustrative'problem (Figure 2-2Y is now exanth' to co sider

4r/ repatitiori of the simPle process. A loop is formed (Figure 2-6) 'xilained.

The student is trained to follow the loop by. working his =y through it several

times, each time with another set of data. Opportunit'es are thereby afforded

to cement concepts of destructive read-in and in-destructive read-out:~

The distinction between an endless and a terminating loop is made.' At

this point, we begin t'o repeat and expand ih detail the initial idea of an

assignment step. The,silhouette.representing assignment,

4
and its contents are brodght into focus.

g "

m . Thekind of computer process it suggests is outlined in a three-step

process. The section closes with a few very simple exercises to make certain.

the s:tudent%has understood the loop just shown in Figure 2-6.

V

Answers to 6cercises 2-2

(a) A = 5.0

(1:,) A = 8.5

(c) A = 5.0

(d) A = 4.3

B = 10.0 C = 3.10 D = unknown.
r'

B = 5.7 C = -3.2 = 10.7

B = 10.0 :C = 3.0 D = 11.6

# = 2.5 rp;:e D * * P.

1

4r.



2-3 Assignment lei Variables
-4,

It may well be that this is the most important section in

A much'more calf-eful scrutiny is given to the assignment step.

involves the. assigning of a value to ,a variables the first job

. T2

the entire text.
4

Since assignment

is to define

what we mean by ewariable. In many texts on_comfuting there is only the fuz-

iiest relationship established betWeen variables of the-computer langfage

described and variables as they are ordinarily defined irf mathematics. - In
. 4

this text great pains are taken to make the two concepts essential identical
.

or at least compatible. An analogy (Figure 2..).4 is drawn between a mathematical

variable and its value and a flow, chart variable and itevalue. The latter can

be thought of as a wooden box. The (mathematical) variable is engraved on its

cover and its (current) value is stored inside"the pox. We make numerous

i-ences td' this analogy in explaining other concepts at later points in the

text. .

With the aid of the wooden box we,define assignment in detail.' Later the

boxf.ds visualizedIas Aving a window. To explain a read-out from memory\(nOn-.'

destructive) we simply send a messenger. look,through the window, To read-in,

or store in memory (i.e., assign a value a variallle), we send another mes-

senger who opens the box, dumps out its contents, puts a new value inside and

Closes the.box. This.simple-minded analogy becomes the basis for good humor

and, we hope, 1.11.11 prove to be'powerful pedagogically."

-
Another point carefully made in this section is the distinction between

the equality symbol of algebra, e.g4, x = 2; and the assigmlent symbol of .

thow chart language, e.g., x(--2. .

The section closes with.a set of exercises for constructing simple 'algo-

rithrs, the first ones of some real interest. This teachers' commenta on the

set is quite complete; several extensions of the ,exercises are discussed.

A ratlie simple but quite,effective way to make the ideas of assigning

and reading values of variables clear to all students is to construct actual

Working models of "window boxes" and organizing the class to carry out,so

algorithms using the boxes for ltoring values of variab1e e oxes may be

constructed from a shoe box, for example, wh ole clit in the sida._,The

number in the box may be represent y writing a name of the number on a 41ip

of, paper and placing i.,t),1111g-box so that the name can be read through the

window. When, in Sectionk2-6, you want to represent alphanumerig.data stored

in the box, you can do itOpy placing quotation marks around,the,alphanumeric

data. Then it will be im ssible to confuse your representation for a number

with your representation for a numeral naming that number. .vs

S

.
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Answers to Exercises 2-3

f.
Note: Problems 1),

Ar"-

3, 4 and,6 of. this set require flow charts. Problems 2-and

5 require the student to. explain something.. The problEpset develops

sequentially. If pressed for tiMe; a class could do -only Problems 1,

2 and 3.

START

1

n, OLDAVG, GRADE

/

2

NEWAVG
OLOLDAVG x n + GRADE

n + 1

3

e NEWAVG

Ifr _
2. In the first form ofthe problem we

,

used single letters for the variables..

.

It was difficult to choose a single letter which conveyed any meaning to'

quantities like bld average, new average,
)-

or grade. The use l'l character
.

strings,4eyen if limIted to a fixed length, like a maximum of six charac-

ers, is preferable. d

Without question the flow chart for the secopd'solution would mean

more than the first flow chart even if the elapted time were only a week.

After One gear thefirst solution is likely to have little or no 'residual

while'the second solution with symbols like,OLDAVG, NEWAVG,and

, GRADE is likely to retain all of its original meaning to the pejson who

drew the flow chart (or even to someone else).

,

3.

..

n, OLDAVG, GRACE

t

OLDAVG 4-
OLDAVG X GRADE

- h + 1-

OLDAVG

In box 2 we are "updating' the OLDAVO. Before execution) OLDAV6,is the

grade average based on n scores. After execution of,box 2, OLDAVG is
'94"*

the average of n + 1 scores. The old value is not needed and can be
A

,destroyed. Storage is conserved by not using NEWAVG as'a
(

20

Z- 6



4 .

4 'For Abel: n = 7, OLDAVG = 77.1, 'GRADE = 91.

For,Chary: n= 7, OLDAVG= 71.2, GRADE =-82.

--For Williams: n =.7, OLDAVG = e4.6; GRADE= 87.

1

!s.

5: Yes, because any and all i

knowledge of the series of

r

ntp.vidual grades can be recomputed from a
r.r.7

cumulative averages. (A grade which is
, .

jecoMpU^ from two success

some un rtainty by virtu

;

6. For sally gilien student we can ?ompute each successive grade as folows:

ive cumulative averages may be subject to

the roundoff errors _in the average values.)

,1st grade is simply the entry in column'l, denoted by CUM 1

'2nd grade is computed by noting that

2nd grade +.1 X entry in col. 1 = 2 X
.

or 2ndrade +'1 X CUM 2 = 2-X CUM 2

or 2nd grade (--.2 x CUM 2 - 1 X CUM Vr4
ft

r,,.d grade + 2 X,entry in col. 2 = 3 x entry in col. 3

or 3rd grade (-3 x CUM 3 - 2 X CUM 2

4

entry in col. 2.

and in general

n j- 1st grade +-(n + 1) x CUMNPLUS1 - n x CUMN

If we let NEWGR be the n + 1st

NEWAVG the average of

OLDAVG the average of

then we get a flow chart like:

(a)

r

- .

n, OLDAVG) NEWAVG

grade

n + 1 ,grades and

n, grades

2

NEWGR (n#1) X NEWAVG : n X OLDAIG

OLDAVG, NEWAVG,

NEWGR

s

I '
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Comment 1.

Another way to view this process is to draw a parallel with the flow chart

in Figure 2-11 to obtain:

(b)

0

START n

3 a.

*fa

OLDAVG '

NEWAVG

2

NEWGR (n +1) X NEWAVG

- n X ,OLDAVG

1

L'-n;0hDAVG, NEWAVG, NEWGR

4

n n + 1

The loop in (b) more_cleai-ly suggests the computation of the series of

grades beginni,nt with the second grade.

use, flow chart (b) each data card must contain two values, the nth',

and the n'+ 1st cumulative average. Thus, for Smiley ,Chary, successive data

cards will containthe.pairs 54.0, 64.0 to compute
.

the 2nd grade, 64.0, 67.0

to compute the third grade, etc. _There is one important difference between the

basic idea in Figure 2-13 and its application here in flow chart (b. Here the

tally n is actually used in box 2. This was not the case in Figure 2-13.

A weakness of the approach used in,(b)is the duplication of data-on suc-

cessive cards. Thus, the second value on one card is a duplicate of the first
<

Yr'

value on the following card. This overlap can be eliminated with the scheme

showniin flow chart (c): Here only the nth cumulative average must be input

to compute the nth grade:

(c).

5

- n 1 64OLDAVG

-1

NEWAVG

Ale

NEWGR il-(n+1) X NEWAVG

- 3b.X OLDAVG

n, OI,DAVG, NEWAVG,
NEWGR

n n + 1

OLDAVG NEWAVG

,
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Flow chart (c) can be explained by imagining we want to recoVer.all_

grades for Smiley Chary beginning with the second grade. We punch ,a series

% of data cards containing the successive gftde averages for Chary, one value

per card. The first card will contain "514.0 `in this case. The flow chart

tells us that box 5 will be executed only once. The value from the first card

is assigned to OLDAVG, but the vaine'from the next (and all succeeding card)

will bi assigned to N4WAVG. Thus, after the 2nd grade is compute'd (box 2)' and

.printed (box 3),bac 4' provides the preparation to compute the next grade.

First n',is incremented. Then OLDAVG is reassigned a value equal to the

current value of NEWAVG. This is really another form -4,f "updating."

Noti;e that the effect df box is to print a line, on which the second

item, Of.,DAVG,is a repeat of the, third item, NEWAVG, on the preceding line.

we want this duplication? Why have weaken the trouble to remove this

kind of redundancy on input and not on tput?, We can easily delete the second

item from the output list in box 3, so by don't we? One answer is. that the

incremental colt of printing the extra numeral is nil, while readability is =,

somewhat enhanced because, each line tells the whole story. There, is one more

somewhat subtIe,poidt. If we drop OLDAVG fromthe output list, we will have

no printed record o ...the value on the very firstAata card which was read.by

executing box 5.* This can be remedied.in a number of ways--but any remedy

will add one or more :oxen to the.flow chart--as for example, flow chart (d).

(

-o 5 6 1 ,

OLDAVG ---40- OLDAVG -r- NEWAVG

2

NEWGR F- (n +1) x NEWAVG

-11 X.OLDAVG.

3

-11-,*WAVG, NEWGR

n (--n+ 1

OLDAVQ *-- NEWAVG

2329



It would seem that the slower students could be c1allenged to develop a

process like this °he and even help you keep your school 'records this,way--

by computer. At a later point in the course you might discuss this data

recovery or "retrieval" process from the standpoint of round-off error. It is
- -

really not possible to recover all the infoimation originally input to the

system. Grades cannot always be recomputed exactly due to round+ ff.errot in

the recorded averages ,(the cumulative averages are only recorded o one decimal.

place). Nevertheles, for e instructor's puspose, this method f grade re-
\

generation (inforMation retrieval) is satisfactory.

V

-fir
orkd

I
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2-4 Arithmetic Expressions

Arithmetic expressionS which appear on 'the right-hand side of the assign-

ment arrow come in for close inspection in this section.. We are especially

interested in pointing out the peaces tn "every day" mathematical notation

which cause problems in interpretation due efther to reading difficulty or

S ambiguity or both. A group of practical improvements in conventions for mathe-

matical notation are listed as eikggestions., If followed, the resulting expres-

sions would not on y be easier to read, type or print, and unambiguous mathe-

matically, but also easy for computers to read.

Two of the suggestions are adopted for our flow chart language. These

are (a) abandon the practice of using juxtaposition to denote multiplication,

. and (b) embrace-fUhctiOn arguments in parentheses, like cos(x) instead of

cos x;

tAtfention is drawn to the three kinds of minu es; binary, .unary, and

number-naming, which may appear in a single arit etic expre4s1(.6n,
I

Rules are,given for forming arithmetic expressions starting from certain

asic forms (Table 2-3).

The important question of order of computation is introduced. The role

of parentheses and the concept*of a subexpression are ititroditced. The concept

of precedence levels for arithmetic operations is presented (Tableb2-4). Next

is the idea of scanning an expression from left to right in search of the next

task to be_accomplished in the evaluation of a expression. Finally, we arrive

at a simple set of rules (Table 2-6),for explaining,the step-by-step procedu're

to be followed in evaluating an expression (however complex).

B
C

One exception' is noted and explained; the case of A. or At Bt C. The

s section includes. several exercises for practice in establishing the sequence

of steps in evaluating expressions, following the procedure that has been

developed.

2531
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' tn case your students have difficulty applying Table2-6 to Exercises,2-4,
,

Set A,)here is.one further example.

Example': The expression is:

A X(B t SIN(A'X,(B - C) t Ax 6- 3))

sTabulated-valties for the variables:

A B C

3 2 5

Display of.Step 15y Step Evaluation

Example 2

t

Step
No. Action

. ,

Appearance of the Expression
After each Step

Initial appearance A X (13 SIN(A K.-.(B - C) t'A X.0 - 3))

1 - Compute B'- C A x.(B + SIN(A X (-3) + A x C - 3))

2

. ,:i

Compute A x (-3) A X (B + SIN(--9 + A X C - 3))

Cohtpute A3 ( C Ax (B +.:SIN(-9 4-'15 - 31)
,

4

.

.Compute' -9 + 3,5

l
Ax (B + SIN(6 =;3))

,

,

5 Compute 6 - 3 A x (B + SIN(3)) ,

6

.

Compute. SIN 3

. .

. ,

A x (B +-.141)
.

7
.

. .

Compute B + .141:
,

...,..--

.

A X 2.141 . .

. .

8

,

Compute A x 2.141

.

6:423(

3 2



We want to be sure the student is acquainted with'the "facts of life"

about the restrictions imposed by the waysmachines read expressions. They

read expressions es a stream or string of characters which means that expresT

sions must be written oh a single life. We also want the student to unarstand

rather vividly that characters as well as numbers can be stored,in memory.
e.

Regarding Figure 2-18:

The parenthedes used-in Case b are Anecessary, blit in Case c they_are

necessary. . _ ,

. B .

-" FOr Case b, both B/C/D and (B/C)/D would mean 2- following the,
D / '

' precedence and left-to-right rules we have developed for these expressions.

That is, the,parenth;eses neither change the mathematical intent nor change the

. computational order% Note, however, that B/(C X D), whose mathematical

intent appears the same as (B/C)/D, is computationally different. Because

of round-off considerations, such an alternative could yield different results.

For Case c, B/(C/D) 1.sMathematically equivalent to sB/C/D, but,is

computationally different. The round-off error for real,nuMbers B, C and

D", may be small, but if B, C and D represent integers, the difference in

computational order becomes significAnt,

For example, let

B = 4

-C = 6

D = 3

all integers

Nov (C/D) is
6

or 2, i.e.,' 3 goes into ,6 two times. So, .B/(C/D)

"correspdnds to 4/2 or 2. On the other hand, B/C ,pr 4,1B, is zero, i.e,___.. i_

6 goes into 4 zero times. Soj- B/C/D corresponds to 0/3 otczerbl '-

4

e-
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Answers-to Ekeicises 2-4 Set.A

Displays of step -by -step evaluations

This column tot required in stuient solution

Exercise Stela No. Action

Appearance of the expression
after each step

*

.

.

1

2

1 3
4

5

6
. -

Initiall Fit. .
Compute a x X

-Compute -4 + b...

Compute. 3 x X

Compute 6+ c
.

Compdte 8 x X

Compute 16 + d
. i

((al. x X + b) x,X + C)- x X + d

(( 4+ b ) x ,-i.2c) x X+ d

( x X + c) x X + d
..141 ,s( 6 + c) x X + d

A -).. 8 'x i.-iid

.1,.. *.

.

a ' 0
16 4 d.

13

.
.

2 '''

-

..

-"-1,/,.(

'2

3

4

5

6

Initially' (a - b) x (c -'d)/(e x (f + g))
la

(-1) K(c - d)/(e x 6"t g))
. ,

1) x (-1Y /(e x (f 4k g))(-1)
lc '4-4. .

(=1) x (-1) /(e x 31: )

(-1) X (-1) T1'. 2 \' ..-

1 7 9 ,e, 'N -

0.11111...

--4.-

, COMpute a,- b
_.

sk.0
Compute

--
c - d .:

.,,

Compute f + g .

Compute e-x &'-

Compute,(-4) <( =1)

Compute 1 / 6

3

.

-""

.

1

2

3.

.

5

6 .

7 -

,

8

3 .14 12-----
(sInitially ---1.

.

Compute r
2

a,

Compute s
2

Compute 10 4= 81

Compute 159

Compute
.

r
2

Compute s x 4.36

Compute 100 x_ PHI

Compute 39.2 + 112

r,2x r - s + ,r)(-PHI)
2

-

31
2 4. 2

(s A1;1;r PHIx r2 - x
2

81
3' .14

(s 1100 PHI)
r2 - x - + r2 x

2

3 .1 4,x
(s "119 PHI)

...2
- x ,+ r2 n

2
r

.

3.14 2 2
'(d x 4.36 -j. PHI)'

-

------)

x r - r x
2

3.14
x

2
(s 4.36 + 100 PHI)r - x x

2

23 .i4 ,.
' 100x r - 09.2 + xPHI).

3. 1 4 2 .
.

(39.2 112 )x r - +
2 ,

-141.1 x r2 - 151.2
2

28

34



9

10

Compute r
2

43.14
,CompUte

CdMpute 1.57 x 100

Compute 15 151.2

3.14
. 2

x 100 -
-.

1.57, x 100 -

157

151

15 .2

7....

5.8

Comment; Resu dr.Exercise 3 were obtained using a slide rule: The, answer

"using an ecimaldigit computer with it = 3.1 )4159 and PHI(arcsin = 1.11977,

is ,5 26: -Notre* that ste 12 is a prime - Source of numerical error.
HP;7.9

'the-difference '47eriketceen two terms of like sign and comparable magnitude.

Exercisl Step No. Action

Appearance of the expfession

after eflth step'

(This column not required in
student solution.)

.. 't

,

-;..,.. .11.

.

1

2
.

'

r

3

4

6.

7

8

9-

.,...0,

Initially 117:7(17q/1 47 71;7)----
.

Compute p2
.

,

Compute q2

Compute -9 + 16

I

CoMpute Z.5 t

compute q/5

Compute 1 + .8

Compute
1

2

Compute .5 x 1.8

-

Cpmpute ./.

1 6.1 (3/1-f x 0- 4747)

/ -1'1
.Y X (1 + q/1/9 + 16)

1 1 (1
1 r---. x l + q1125 )

/3. x.- (1 +, cil5) r

il-. x (1 + .8)
.

2

/1-f x 1 8

;1.5 x 1.8

179

.949
.

.

. -

,,,F93 5

St

I-

r'
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tic

Not counting the prior step involved in computing rsq, there are three

multiplication steps saved each time this expression is evaluated.

When common subexpressions appber in a giveri expression, like
)
2
r in ExerciA 3, it is frequently more efficient to compute

the value of this subexpression and assign this value to a nev[1,, rcc I
variable, like rsq, which can.then appear in the larger

-.- .-

expression in placp of the original subexpressipn.

Thus, if the original. problem was to carry Out the

assignment,

1

AREA(--
3.14159

x r2 -.----4 (s x 42 - s2 + r2 X PHI)
2 -..,

and, moreover, if box 1 is to b4;.rdpeated many times for the

same value of r, a more efficient approach would be to .

first carry out the assig nts in box 0 and thed execute

revised box 1 that is inside a loop.

. #

0 '

POVER2 4-3.14159
2

rsq frXr

1

AREA <-POVER2 X rsq - (s X sq - s
2
+ rsq x Pig) 4

box 1 (revised)

Students can be motivated to write efficient assignment

statements after looping anditeration is introduced in

Chapter 4.

30



Answer's to Exercise 2-4 Set B

"*-°!-----Time are no superfluous parentheses in Case a. In Case bathe paren-

T2

theses around (D/E) can besomitted: yielding

(A /B + C x,D/E)/(F x G).

Nqpice, itIT-possible to make a further revision -',
.

(A/B + Cx D/E)/F/G

).

thereby removing a pair of parentheses, but in doing so-we are changing the

computational rule though not necessarily the matheAatical intent.

'4

- I

J

31-37s,
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2-5 ,Rounding Functions

The general idea of rounding will be quite well known -Ole studerit:::ge4^

knows, from long experience, that in long.division and in taking-square-rcrot-

he must somehow terminate his proces. More thimilikely he views rounding as
Le+ Tu. .4 -5-

a rather random procedure. The number of terms to which he carries his divi-
*

5106, as wara6 the decision on the value of;the last digit, is left to

student caprice. x .

% .

One of the purposes of this section is the presenthtion of rounding as a

perfectly deflniteprocedure describable in terms of well-defined mathematical

functions. All of the common methods are seen, in fact, to be expressible in

terms of the greatest integer function.

The /gee that rounded values'are exactly Aetermined'and that the functions

used are genuine mathematical functions is reinforced wV:hen we show that these

same functions are frequently used in obtaining the exact answers to certain

types of Mathematical problems. The only one of these which has earned a name

in ordinary mathematical notation is the Greatest Integer Function, (X]. All

the others are easil - re ssible in tepid of it.

The i a of using-t5e greatest integer function in obtaining the ecise

sol ons tp problems is illustrated in examples and problems of this section,

in the Euclidean Algorithm of Section 3-2 and in nuliftRus other'examples. en

such rounding is required in the Mathematical solution of a pralqm

indicate it in our flow chartL, i.e., explicitly. Thus, in the Euclidean

Olgorithm of Section 3-2 we find

4

4 A - B x N/A]

Which assigns to 11 the remainder in dividing the integer A by the integ B.

On the other'hand, we never indiate.in our flow charts the rounding tht

is forced on us by the finite word4length in the computer. This sort of round-
.

ing is ever-present in computing. Every arithmetic operation in a computing

processis followed by a rounding actiorPthq is an application of some round-

ing function. If, for example, the rounding being used by the computer is

ROUND to the nearest ten thousandth, then the floWchart box

7-41 X +- PA
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will have the. effect then that the value of X will be

lo X ROUND(10
4

X P/Q)

Again in the flow chart boX

Xl (-(-B +
h2

- 4A6)/2(A)

one solution of a ertain quadratic equation is being aspigned to Xl. The

exact value of'the expression on the right is the exact value of the desired

ibot
i

However-, the computer must p_lrform nine operations in the evaluation of

the right-hand expression and all but one of these operations is immediately
I

followed by a process which is tantamount to the application of a rounding

function.

It is difficult:to estimate the error in the sictwal computed value of Xi.

We adopt the hopeful attitude that if the initial values computed for the vs21,----7

iables are sufficiently acculte, then the answefs we output will also be close

(but less close)., The'dangers inherent in this assumption are strikingly . <,,t)

brought gut in Chapter 6. Y st-b

"ft is not intended that the student should commit to memory the names of .

the various functdons.iritroduced in this section. The functions GRIN and

FRPT should's4fi,se for all future needs. °

One more related observation;
2.

0

` When we want the computer to produce

get it by specifying an ePression which,

equivalent of what we want.

For exampaa: Mathematically

an exact value, we
Itft

pthematicsaly, is the exact

don't always
s

.7_

7 X FRFT(10/7) and 10 - 7 X GRIN(10/7)

4.
are both equal to the remainder when 10 is4divided by 7, but a

putei* with round off to 4 decimal places will compute tgem.respectively,
.40

as

2.9995 and 3.0000.

The, second alternative is then greatly to be preferred.

3339
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Rounding to produce exact values: Flow Chart vs. Procedure Languages

411 languages like ALGOL and FORTRAN certain conventions are used which

,allow us to imply rather than )ge forced to spell out some of the rounding

functions that rroduge exact values. We shall elabomtron,this because it

can be a source of confusion when carrying over key concept44,14e assignment

from the flow chart to the procedural language.

Suppose we have a real'value of A' which is to be approximated as an

integer in some way and suppose this approximation is to be assigned to I. .

We must spell out this proeess in the flow chart as a sequence of two steps:

rounding, and assignment, eg.,.

--D-1 .1, MUNK(A ) Ho-

or p6ssibly

L I <--ROUND(A) 1=4441.-

r 4-

In most procedural lsingmges, however, the assignment statement has round-

ing ash an implied operation.

Thus, in FORTRAN we would say

(rounding action of TRUNK is automatic)I =A
or in ALGOL

(rounding action of ROUND is aut tic)

Implied rounding arises because each variable has, a type or mode associated

with it that governs the digital coding scheme used in representing its value

in storage. (Uslly the type for each variable is declared as part of the

program or, in the absence of explicitdeclaration, some "..defaule rule is in -,

yoked, allowing-the computer to decide the type.),:

The particular rounding function that is implied in an assi ent state-

ment, as can be seen froin these two

It depends on the compUter language

Finally, .we note that integer

thrown away,, is another example of

'examples,.is unfoiltunately not standa0.
,00. -

one happens,tohe using.

division, i.e., where the remainder is14
44

implied rounding in some of the procedural

languages. Thus, in FORTRAN and MAD, there is no special operator symbol to

denote the TRUNK function operatinEon the quotient to give its integral part.

This is simply implied Whenever the two operands of the division are type

integer expressions.

34



.Answeri to Exercises 2,6 Set A

1. 6 trips

2. (The purpose 4"if this question.is to begin motivating an interest in

Chapter 3 which deals with-branching.) The algorithm is definitely not
TOseaworthy, WrOng answers will occur when FRPT(

CA / 0.CI NS

TY
c

*hen TONS is exactly divided by CAPACITY the algorithm will print out's

value Aor TRIPS which is one too high. While this is an unlikely occur-
.

'rence, it nevertheless can happen. Many students will recognize the

problem but few are likely to see how to solve it, because we have not

yet introduced the Condition box in our flow chart language. A simple

solution, which will becom meaningfuljafter completing Section 3-1, is

as follbws:
. ar.

2a-

----01 TRIPS F TONS
CAPACITY

lo 2b

[TRIPS] = 0:) T

a

O 2c

TRIPS f- [TRIPS) ,+ 1

0

A bit of philosophy: Compex computer programs often hal cased like{

' this which fail
.
tO showonequs.results during the check-out phase With the

/0 e

particular set or sets of test data. .Much later, when the program is assumed,_

fObethoroughly tested and in actual "prOdLiction", an obvious plunder in the

. program, like-the one.illuStrated.here, comes to light when using, perfectly
. .

legitithate,data. .
. ,

i

,
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Answers to Exercises 2,4 'Set B

This group of problems gives some practice with the four rounding functions,

ROUND, ROUNDUP, TRUNK, and ( ]. Exercises 8 and 9 introdude the use of the

greatest integer function in modular arithmetic (computation of residues).

Ekercise,9 is 'the
i
first of several appearances of the carnival wheel problem.

Over a series of exercises in Chapters 2, 3, and 4, we show the student how

this simple problem can grow in complexity frod computing the winnings on a

single spin of a Wheel that has a simple (linear) win-loss,function, to an

experiment in which a'wheel whose win-loss function can be of arbitrary com-

plexity is put through a sequence of spins with the wins (or losses) being

accumulated!.

It is possible to develop this even further.,' ddi ional discussion is

given in the commentary in conhection with Exercise 4 of Section 4-1.

A

a

a)

S

4 2
36
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Answera.to Exercises 2-6 B

1. COST = .08 x RCUNDUP(WT) or COT (- (-WTI)

2. N = TRUNK(Er) or N
NBOY]:,

3. y = ROUNDUP(X) (

9

Y =-(-x]
F 3-

1

4. y = TRUNK(x)

4

5. y = ROUND(X).

-3 -2 -1 1 2 3

..,111 -1

-2

3-
2_

111C

x

73 , -2 -1 1 2 3

--1

111C

p --3

37
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6. Comment: This exercise is in the "fun endgames" category.

7.

-

2
, -

,
X

5 3 1 1 3 5
2 2 2^ 2 /2 ,2

ROUND(X) -2 -1 0 1 2- 3

8. a . NEW S + - (8+M-1) x 5

b. ,None

M-1 .

c. NEWS S + M - (S+-70) X k

9. This exercise with the cernival wheel should provide good practice with

moduldh arithmetic and should deve an .appreciation of the value of

intdger, arithmetic

in later chapters.

Answer: Notice that the wheel will come to rest at a position

in general. Other exercises are built on this one

s
new

= (m + sad) modulo 32

Then k = s' modulo 4.
1, new
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On the other hand, we are not really interested in knowing snew in

this case. We only need k, which we can compute directly:

k = (111'+ sold)modulo 1

This can be expressed as the flow chart box

The points p

k m + s - (m sl x 4

can then be expressed in terms of k as

p = 20k - 30

as suggested by the graph

at right which shows the four'

possible point values falling

on a straight line. :*

poshwe
expeciahan

T2

player corn*: eve
abou, even. -

JBased on the above discussion, we then have these three alternative
. . .

flowchart solutions, in decreasing order of elegance.

(a)

1.

.

1

J



O

(c)

r

r- , f--7--
If you feel some%or all,of youl. studentsZ will need additional hel rffth

this problem, you might offer some help along the following lines.
1 ,

Additional suggestions , .',(

. .
1 ;

1. Suppose you divide each of the blue sector numbers by 4. What are,the

remaindeis? What are the remalnders.if you had started with the green
.

,

septor numbers, 2r the red, or the yellow sector numbersi Axe the t

I

remainders you just found the same as the values,of k 7

','
_

(acceptable).

' -

f.

a
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c

2. Prepare a chart for plotting the points won versus the remainders of

step 1. Call the remainders k.

3. Plot the four given point.values on this chart as a function of k.

4. Do the function values fall on a straight line? If so, fihd,an equation

of the form

p =mXk+ b,

by determining m and b.
.74

Comment: In the problem statement the point formula is.such that after a

large number of spins the player should come out about even. (Coming out,eyen

means with 0 total points:) Since most players enjoy winning, it is of

interest to note that shifting the_straight line in the graph upward, as

suggested in the figure, will give the player a positive expectation. Its

would be interesting to see how the students would answer the following addi-
-

tionadiquestion:

"How would you alter your flow chart if the rule is-to be \

player loses 40 points for blue

player loses 20 points for green

player wins 0 'points for. red

player wing poidts for yellow?"

The answer:

Only.one box needs to be changed in the flow chart--box 4 becomes

p (7'20 X k - 40

2

This number is the only change!

Later, when co itional statements and subscripted variables are ihtro-

duced it will be pos ble to simulate much More interesting games of this type.

"ykl

74
1



T2

I

2 -6 Alphanumeric .eta

The ideas developed in the preceding section, coupled with those in

Section 1-4 on it patterns for alphanumeric characters, are reviewed in order

to introducethe idea that flow charts may describe the inputassignment, or

output of alphanumerical as well as numerical data. Careful parallels are

established between each of the three Step types carried out on numerical and

non-numerical4data.

First we explain how a variable may have a non-numerical value. Thus,

the Value of X might bt-the-,let=be qX". -,Then".*show the two possible forms

of an assignment step-,
1

4

or

variable (-variable

variable (-alphanumerical constant

Several example flow charts which deal with alphanumerical data are illus-

trated and explained, The section closes by pointing out certain possibilities

foil ambiguity in a flOw chart where it is not possible, looking only at the

flow chart, to tell whether a given variable is to have numerical or non-numer-

ical'Alues. The ambiguity is eliminated in one way or another in each com-

puter progamming language. 0

Comment: Weabelieve it is very important that the student grasp the potential

of computers, flow clarts,_and programming languages for solving problems which

deal with.alphanumerical:data, e.g.,. data processing, symbol Manipulation,%etc,.

But we also realize that there simply may not be enough time in a one-semester .

A, 4 s 4.

course to cover this'topic and those that bear somewhat more directly on con-

vedtitral mathematics.. For this feason we have6a tempted to plade the topics

on alphanumeric dita processing at the very endof this,phapter and at the end

oe apter 5 where it is discussed. Zn this way the material may be skipped,

wl out loss of continuity. The exception, of course, is Chapter 8which dealsy

entirely with pibblems using alphanumerical data.

There are no exercises fins this section. As noted in fe outline we gave
4 0 ,

for Chapter 2, this section, and its companion section in the language supple-

ment, can be 'skipped without loss of continuity. The section is not al all
, -

diMcdlt to understand--it has eye-opening ideas. We hope it will prove both
4

amusing and intriguing, and that time will be found for it.

W
42
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Chapter T3

BRANCHING AND SUBSCRIPTED VARIABLES

3-1 Branching is introduced. The use of the simple condition box

is illustrated with several examples. Calculation of D
2

and the com-
a

parison D
2 < 841 would suffice in Figures 3-1 and 3-2 saving computing

time in taking square roots. However, the intention here is to focus on

the condition box rather than efficiency. Simple programs and loops are

described. Relational expressions introduced as the.basis for a branch; 14)
other decision 'criteria are illugtrated. The problem of finding and

identifyingfying the u&largest of three'nrs is di4ssed in detail, showing

alte tive flow chart forms. The section closes with an example algo-

rithmrithm for tallying test cores which (Figure 3-7) uses all concepts

developed to this point.

Two exercise sets are given. Set A is quite easy. It is'intended

to show examples of,simple branching. Exercises in Set B will be more

interesting to the student since he is being asked to synthesip flow °-
. ,,-

chart far simple algorithmd..'. 9,

r

,
,

3-2 Auxiliary Variables; that is,_ variables ;Rich do not specicur
.,

in the problem statement are discussed and illustrated with significant. ?'

mathematical examples. The first of these is the Fibonacci Sequence.
°

The need for an auxiliary variable'CallegtOPY is illustrated graphically.

Actually, this need for COPY can be circumvented by replacing box 4 of

FigUre 3-13 by

LTERM LTERM ''+ NLT

NLT LTERM - NLT

(- I + 1 ,

9*
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It is hard to find. really simple examples in which the use of an auxiliary

variable (for all itsytjaity) cannot be avoided. Exercises using sub-

scripted variables (Section 3-5) will require frequent use of auxiliary

variables.,

Exercise Set A follows the treatment of the Fibonacci Sequence.

Exercise 2 uses the simple generation process of the Fibonacci Sequence

to produce a set of numbers uniformly Vistributed between 0 and 997

(see Answers to Exercises). This exercise is referred to in later sec-

,tions as a source of "random numbers".

In the same section we develop two algorithms for computing the

greatest common divisor (g.c.d:) of two numbers (Figures 3-14 and 3-15).

A number 'of later exercises will require the use,of a g.c.d. algorithm.

, The notion of interchange of two variables, a common process, again illus-

trates the use of an auxiliary variable. Curiously, the need,for an

auxiliary variable can again be circumvented (bui* at some expense in

complexity arid compUting speed). For .example, instead of box 4 in
Figure:3-14, we could use

4

B 4-A + B

A 47- B - A

B B -

We do not feel that this is important but don't be surprised when, some

students come'up with it. 0104N4 ,

The section closes with an iiltroductiop-to the idea of an organiied

trace through, the' steps of an. algorithm for purposes, of "desk-checking"

or verifying an algorithm. Two.exercise sets are given; Set B4Ocontain-s

ing two questions,,end Set C, each exercise of which requires construc-
.

tidt of :a flow chart modeling some analysis of a straight line (or line
, 4

segment) through (or between) two given points.

,4
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3-3 Compound Conditions end Multiple Branching

Although we do not introduce the logical operators and, or, and not

in any formal way in this text, we use these informally. For example,

the compound condition

. VN
, ,,,f,

mayis explained, and we show the student hOW such 'compound conditions y

be decomposed into a group of one or more simple condition boxes, each
.

,

involving only one relational expression., We also show how a multi-way

ptalach can be decomposed, if desired, into a series of simple (or two-way)

co ion boxes;-and we illustra e this multi-way decision boxin a

ALre fqrm of the tallying al rithm (Figure 3-20).

There is an Important set of exercises at the end of this section.

Compound conditions are given in the form of verbal statements and graphs

,..of geometric regions. The student°must then developor synthesize

detailed flow charts using simple boxes for each-case. He is then given

severaf_ flow charts of compound conditions and asked to graph the region

determined by these conditions. The carnival wheel problem from Chapter

2-6 is expanded in this set (Exercise 11) -and is treated one more time in

an exercise in Section 3-5, Set A.

3-4 Precedence Levels for Relations

o

We explain how relational symbols may be thought of as having a

precedence level with respect to those of the arithmetic operators

(Table 3-2). We actually avoid calling these relational, symbols
<

"operators," although, of course, most computer and language people

'7"), prefer to think of them this way.. We have also avoided referring,to a

relational expression as a "logical" or Boolean expression (whose value

iseither true or false). We have chosen to avoid the complication, in
moOic.

this text, of defining Boolean variables and Boolean values, Instead, we

simply think of a relational expression as having the three-part form:

arithmetic relational . arithmetic
exprssion- symbol expression

NuexerCises'are given at the end of this section.

'!..1*
J45 51.
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3-5 Subscripted Variables, the second crucial concept of this chapter, is

introduced here. A good deal of.atteption is focused on the' istinction

between ordinary variables'an. subscripted variables.and the distinction

f -between inscriptiOns like

X
3

and XN

The problem of finding the.largest value in,a list of values is

illustrated with and without the use of subscripted,variables (Figure 7-22).

A special notation is given for the input and output of datiivalues

for a list of sequentially subscripted variables. Thip ;.s q notation

which is in common use. Some progrgmming languages use essentially this

notation while others (notably FORTRAN) unfortunately interchange the

order of the, increment and the cut-off point. We can, only remark that

the order used in FORTRAN i.s not the common mathematical N:age.

The section closes with the development of al very ample algorithm

for sorting a group of numbers in ascending order (Figure 3-27). This

algorithm illustrates nearly all the key ideas developed -din the text to

this point. AltholIgh Chapter 4 again takes up the question of sorting,

an exercise at the end, of this section (Set B) requires the student to

begin thinking seriously about -the process (Figure 2,-27) and understand

it thoroughly.

A vector is defined in this section as a list' o' variables like Xi,

X2, etc. of a linear array. We also agree to call the list of values,of

these variables a vector.

52 46
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e
,3-6 Double Subscripts are introduced here. The singly subscripted variable

concept is expanded using the now.familiar window'box technique (see
..***
Figure 3-30). A set notation is introduced for input-output of a com-

plete matrix.
*11.4

A'set of matrix elements ate listed in a sequence determined by an

inner index which ranges over a set of values for each value in the range

of an outer inde hus, irl, the notation:

((B. 1(1)3), j = 1(2)10)

inner outex,
index ,index
(rows) (columns)

1,3

the sequence of elements suggested by this list is the elements of the

odd-numbered colUmns (one column after\the other) of the B array, i.e.,

B
1,1' 2,1' B3,1,

B1,3, B4,, B5
)5,,,B1,5, B2,5,

B1,9, B2,9, B3,9 ,

Similarly, in the notation

((Tia j = 1(2)5), i, 1(1)3)

inner 'outer

we refer to arrow -by-row sequence (3 rows) in each of which we take the

elements from odd columns, i.e.)

T T T T ,T T T1/1' 1,3' 1,5' 2,1' 2,3' 2,5'. 3,1

T
3,3'

T
3,5.

A simple zero-sum game using a 6 x6 array of simple integers is,-

then devised-and modeled or translated into flow-chartfform. The power

of subsc'ipts is suggested by our.ability to generalize this game.to onec
which uses an n x n array.

Several exercises requiring the student to synthesize loops which

carry out simpleoperations on a row or column of a matrix are then given. 4

47..
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Answers to Exercises 3-1 -Set A

*At

1: 2 X 5 <-7

2 X (-3) <

is false. Output value for LRGR is 5.

-5. is true. Output value for LRGR ,5.

3. 2 x (10) < 5 is false. Output value for LRGR 'Is 10.

:A B A2 A2 - B B
2

Value printed for LRGR

4. 5 7 25 18 < 49 true 7

5. -3 -5 9 14,4110p< 25 true -5

6. 10 '5 100 95 < 25 false 10

Comment. on Exercises 7-11

For each exercise test data and answers ar iven. If you assign the

mkuter-checking of these exercisesSkyou may wish to give the students these

data and check their computed results against the given answers.

7.

Test Input- Box 4 or 5
Data b,c,d,x Output

8.

Box 6
Test . 'Input Output
Data b, c, ci,x , t

1 7,3,,2 '4 1 7,3,4,2 1

2 3,7,4,24ow 2 '2 7x4,3,2 34 '

54 48
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Co nt on Exer e

cad

V\

e

heti stade not

2h 'be assigned, to the same

to him. The advantage of using the

statement box 6 can then be used.

,

yet see that values

T3

for c b+ d .x and d C

variable, say t. Thfs should, be pointed out

same variable is that a common print

\

'9. (a)

I-

5

wf-b+c+bxcxd

6

t

F

w f-b2 )<c2,Xd

y (-(b+c )8

w,y

it

.e

Test Input
Data

1)-142-c

-1 7,3,4,2

2 7, 3, 6-, 2

Comment 1Solution (a) is more. efficient

Box, 6 or 8
Output
w or w, y

15876,108

computctionally in the sense that

subexpressiba developed and temporarily stored for use in the test in box 4
.;;

are peuse'ed in boxes and 7. A minimum of computation in boxes

'required. The virtue of Solution (b) is J.hat it, follows the,sta
. .

You an expect stu to turn in solut id s like/ (b),

soltitions like. (a) should be pointed out to them.

and 7 is thin

ement. of the

,.prolger,more closely.

49
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b,C

b = 0

T

c
X = -

A

Test Input Out iput .Out

j,m,n 0,m,n,sum

1 : 7,9,11 ,9,11,18

2 8,11,9 3,11,9,19

Test Input Box 6, -7; or 8
Data b c- Output

1 2", 4 the root of "bx: + c

'ip -2.0

'2' 0,4 bx + c' = 0 ha's no-root

3 ,..--4_ 0,0 , ,c4iIrery real number

i '' satisies-bx + ck= 0, .i., .

6

4

8

' 4z:
4

I

c;.-. 0

v 7'
"EVERY REAL
NUMBER
SATISFIES
bx + c ='' 0"

"bx +c \ =
HAS N
Rd0T" \

"THE ROOT
OF bx+c ='0

IS", x

'7;
1

50
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Exeroisep 3-1 Set B

This is a very important exercise set. We, expect the studertt to try his

hand at synthesizing simple loops. Students should be asked to do at least

two or three exercises here' including 4 and 5. If necessary, the answer to 1

Could be given to them. But, if so, he should then be asked to do all the rest:

Alternate solution:

Box could ?e

START

.SUMCUB 0
COUNT t- 1

T

45uNcup (- SUMCUB + T3

1

4

COUNT t- COUNT 1

F
4 1

(COUNT > 1,00

"SUMCUB SUMCUB

C
14

,

V



.

to'

SUMNEG Q

COUNT f 1

T

T < 0

*SUMNEG SIJMUE G +tT

.5

COUNT ( COUNT + 1

.

; 6
COUNT > 100 )

-

"SUMNEP "
SUMNEG

O

START

SUMALL Q

SUMCUB 0
SUMNEG F 0
COUNT * 1

i.

T

SUMALL SUUALL + T
SUMCUB SUMCUB + T3

T < 0

SUMNEG SUMNEG + T

COUNT COUNT +

8 52

7

(COUNT >1100)

f

G
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I e-0
State f- 0

ScA f- 0

ScB F-0

12

= 100 ScA = ScB

FA

T > 0

5 .4..

(STATE =
oy_

ScAf- ScA

8

13

"TIE GAME"
ScA,, "ALL"

o 4

r

-

F.

'6
(: STATE = 0

State f- 0

9

T

15 16 I

"PLAYER A WINS",

S9A,"To",ScB

(0.

'PLAYER B WINS",

ScB, cA

State

10

$c)i ScB ji- 1

4

7

s '
-torment: The condition bokes in the solution could, of course,' Arranged

in a variety of equivalent ways. A more subtle solution, not likely

to be produced by the student at this stage, is shown below. We use

*1 aid -1 fqr the states in order to simplify box 17.
rom Box 3

.-
t Box 2 17

21

1

4
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Answers to Exercises 3-2 Set A

1. We assign 0' for the initial value of NLT instead of 1 for the follow-
,

ing reason: The value's printed for LTERM at box 2 would be 1, 1, 2, 3,

etc. But, if NLT were initially assigned the value -1, then values

printed for LTERM would be 1, 2, 3, 5, etc., with the first number of

the series missing.

2.

- 1

4

, LTERM 2

< 117)

COPY (--LTERM .

LTERM -LTERM NLT
LTERM NLT)

COPY.

I< 17 )

F

1'

For large numbers in tA. Fibonacci sequencetheih rightmos 'decimal
.10.0e-

digits are essentially uniformly distributed between 0 and 10n., thus, an

algorithm like the one for this problem has. been found useful for generating

random numbers, especially when n is larger. (See, for example,

"The Language of CoMOOters,"-Section 6.3, p. 72.) Eveh for n'equalkthreeuit,

may be puss le to see that the numbers approttch a unifrm distribution.

I.e., approximately half of the generated numbers should exceed 500 and

approximately one -tenth of the 100 generated numbers should fall betee11

300 and 400.

Suggestion: You might use the 100

for the exercises'in Section 3-1, Set B.

generated ndthbers as the data set

\til

55
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.3

( TOLD

1v.

I 4-- 2

TNEW

TWOSUM TNEW + TOLD

" TWOSUM ="

TWOSUM

TOLD TNEW

I 4-- I + 1

7

F(I> 100

6 2 56

OLDER

2

( TOLD.

I (-3

TNEW

ALTSUW TOLDER + TNEW

HALTSUM="

ALTSUM

TOLDER f- TOLD
TOLD TNEW

1
.



5

STAR

k

TOLDER

3

TOLD

4

I f-3

5
TNEW

6
CIi

> k

TOLDER 4 TOLD

TOLD 4-- TNEW

1 4- I + 1

se

4.

ti

0\

8

TNEW < TOLD

AVERAGE 4

TOLD + TOLDER"
2

AVERAGE f

TOLDER + TOLD + TNEW

3

AVERAGE

12 ,
I > ioo

't41.7-

-57

,>.;
: )

F

T3
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6.,

Comments:

V

1

"N", "A", "B", "C"

N *7'0

A *- 1
SUMA 1

B -1
SUMB 4- 1

C(-1

_1-

I 44

C + 1
5

SUMA + 1

A*- A +1
N - N +

SUMB SUMB + B

SUMA SUMA + A

You may need t o g the.ttuderits some hints in order to prevent them

'from umming all the t ms in Columh A, and Column B each time they need a new

B and C, respectively. T,rie hirit might go something like:"

It
Summing all, the terms,in Columns A and B each time you'need to

. .

computt a new B and C, respectively, is wasteful, difficult to

prog'rai and can be eailyit'VOided if you employ auxiliary variables-

hose Values ar-e the mrunhiAg"::sums of Columns A and B."



J.

Exercise 6 calls for' the generation of the following table:

J

N A 1

4I.
t0 s 1 1 1

1 2 2 2

2 3 4 4

3 4 7

4 50 11 15

5 6 16 26

6 7 22 42

by the process

etc.

N-1
B
N

1+ Z A.
i=0

(N-1
, CN 7- 1 + Z B

i
, - i=0

. Notice also that

BN = AN-1 + BN...1

t,

J-
°

CN Bil-1 + CN .
.-.1. v

s
t-

for allIthe entries shown. Is it generally true? Consider

=,1+ EA
BN+1

. 1=0

A ek, "

N-1
=1t + EAi

i=0
N-1A

= AN4 (1 + E Ai)it= AN + 1311

which p.roves the general truth of the second form (for the 13) by

mathematical induction.'



o
The solution to the same problem is now seen to be:

. t

h

N 0

A 1

B 1

C

3

B, C

N 5:15

C C + B

B B, A

A A +. 1

N N + 1

6 6 6o

4

aso
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Additional remarks on the Fibonacci sequence

In this Chapter and in diaper y we have made considerable use'of the

Fibonacci Sequence. This sequence has served as a pedagogical vehicle for

introducing and illustrating various flow-charting techniques. The computa-

tions themselves are of no mathematical importance and there is a si ple for-
.mura for the nth term, of this sequence. We derive this la below.

Whether this deriN,tion should be presented to the'students as "enrichment"

material must be left to the discretion of the teacher. Certainly, if the

student can follow the presentation, then the mathematical content (i.e., that

of solving recurrence relations) is very important..,

If this material is presented to the student, it is likely that he will

experience his greatest difficulties in passing from step (3) to step X4) and

from step (4) to step (5): In ordeer to clarify the transition from step (3)

to step (4), the teacher could copy from the formula of step (3) with k re-
.

placed by 2, 3, 4, 5, 6, 7 and-then add up tha corresponding sides of the

equation indicating the sum, with dots (e.g., al +a2 + + a7). Now use....

7
sigma notaiion.instead orthedots (e.g., ' Z ak) and then replace tie 7 by

=n throughout the formula. k 1

In getting from step (4) to.step(5) it should suffice to observe that the

indicated sums i1n step (5) have the same terms as those in step.. (4). Now we

proceed with the derivation of the formula.

The Fibonacci Sequence is determined by the following recurrence relation

'and- initial conditions:-

(1) a
n

= a
n-1

+ a
n-2

for n > 2 ; a0 = al = 1.

We have seen in the student text how we may successively compute a2, a3,

etc. We now derive a formula giving a
n

directly without first calculating

le; a2, a3, a4, etc.

First we substitutey k flar n in formula (1) to obtain

(2) ak = ak..1 +,ak..2 for k > 2.

a

ti
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.0

the same in all three,

.
i

Next, multiply both sidesiof this equation by x
k

, yieldingl

X k e '' k
for 2.(3) = ak_ix + ak_gxs

Now sum from k-= 2 to n,

IT
1

k k
n n

.40) z4 akx = Z ak_lx + Z ak..2 x

k=2 k=2 k=2
,

Rewrite the last two sums so as to have ak Appear in theosummand
I

In n-1
k-r

n-2

(5) -Z akx
k

= Z akx + Z akx
ic=2, k=1 k=0

From each sum in (5) pull out two terms so as to have the range of the 4,ndsx' k

(6)

n -2

a, xn + a
n-1

x
n-1

+ i2a xk
n.

k=2

n-2 n-2
= a

n-1
xn + Z akx

k+1
+ a

1
x
2
+ Z a,x

k+2
'+ ax

3
+a0 x2 .

k=2 k= "

Combining-some.terms:

n-2
k+2 k+1 'k*

(7) a
n
xn + an -1x (1 -x) ,,=

2 2
(1-x),,=%

1
x(x+x ) + aox + Z ak(x + x x ).

k=2

Recalling from (1) thAt- ao = ai = 1, P

n-2 4:

a x
n

+-a-
n-1

x
n-1

(1-x)"= x(X+X2 + x2 + E akxk (x2 + x -
k=2

or
n-2

2 It .

(91 a nxn + a
n-1

x
n-1

(1-x) = x(x+x_)---+ x2 t (x2,4, x - 1) Z a x,.:',0N_-- 4 -0 ..
0

it.q,..k 0
.-;

1, _

0 , 1By skipping stiopecW and just summing (2) from k =42 to ..,ti (this tmounts to
, 4 ...

substituting .for x in,(4)) we havi!'.'
. ..

°
. . .. n - n n::

4
,Z ak_i + Z 10-32 ..,,..

.

k=2 k=2 'k=2. ' 0 .

o. b or 1- .1

"
i

.
0

.0

''
,

, n-1 nA. n-2 '.. 'ef

a
n
+ Z ak = al + Z ak + Zak

40

0

° e 4 .k=2 k =2 k=91

a
t

. .

i h-2 f, 4 ..S

'\

so that . e
a
n

1 + Z-a, . . - 05
.

.5 40. 0
* : 1,,----d

r

.3

This result/earialso be obtained 1;,y substituting 1 x in (7) below.
It will he discovesed,by the4studient when he works problem 3,4xercilb 4-1.

e .

:; 6 862
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i, . W
T2J.......0.1-bcfo-

gy,

'.... t
ii

Now we will determine the Value of * aCICtliat x + x. - whence, the
last stdaln forraufa (8) will drop oirt.. Using the quadratic .formtila, the- rooe'... ,5 ., .... .
of 0

. . .
we found, to be .,. b- . .

i
. 5 ,.... -1 +, Z..' ' ,-1 .: 6-

,' end
Cllar --

+,r5 I. . : - & '. 0.1 .
For convenience we write: r = so tit tthe two roots are.

Vdt.. ..,

x2 +x 1

alr

(lo)

If designates
that (9);becomes

Or

1 +
.

and2- r
-71k,

-1 - .v(.5
. 2

2her of these roots, we have, .x2 + x = 1 and 1- x= x, so
1-

a xn + n+1
nr n-1x , =

. 1(12) :
all + an -lx -71

k ,r. ,s . x

Substituting each of 'the ro ts for x- we have the system,
1an --f an-1 r ,

= rn. -----/
(13) ,-

1 n

.
,

an-1 r = (- r )

4, 0 'Now we multiply the first oft se equations by r and the second by
, add-to ellednate an-1.

_
.

(.

From (f0)

,
'(15)

4 which is

.

r+ 1
r

a 1r an +-an_i 7 =,r

n1an - an-1 r = (--)
. .

n+11 n+1 '(r + )an = - r

is seen to be sl.mRly ,r5 so that

1 , n+1 f 1 -n+1

r5 r

thedesired formula.

O

6ki 9

1
r

r r

and
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n+1.-

(

It is seen that thel term tends quite rapidly o o for

large `n, a
n

is approximately
n+1

where r is a Proximately 1.618.
5

1

.20

A
It is, further, easy to calculate, that r = -csc as seen bdlow.

2
thti isosceles triangle (a)

jx.m. thaw from the vertex B afsegment BD bi secting L ABC to obtain figure

c . From the similarity of -A ABC aryl, ABCD we: have

or
,;

so that

x2 + x - 1
*

=

,-1 + V5 1

2 r
. .

X A
Buti from, the:isosceles trianglp i'm (b) we see that -f =sin To- . Thus;

1 A-i-,= -5 rse To- and (15) becomes .. .'
n+I n +1

1 1 A A(16)
°

=

4
-4((2ecsc Ns) -: (-2 sin-,-5(3) ).

.
,44.....---. , I

'A last
,
,interesting paint concerning ;the Fibonacci sequence involves the

.... _ / .
"golden mean". Now yoU may know thht a rectangle is said to have

I c.

/-2
r b .

1

the golden proportion if

(17)

a

a + b a

a

r

. ,
Letting 1 = x

''
then (17) becomes

b --
. 1 4t-1 +

X
= X Or X2

- X 1=t. '
so that ,x (necessarily positive) ,_is,

V. . .1 + 1/5
2

or r .

*. 70 64

,

ri
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'The Fibonacci Sequence is of little mathematical impollance in itself. However,

as has bee)) seen, it is pedagogically quite useful in introducing some'inte-

-

T3

esting mathematical techniques.

4

444
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Answers to Exercises 3 -2 Set B

1. What is requirediis a simple change to `take advantage of the fact that

the last two assignments of box 4 occur ,again in box 6. The necessary

change,is incorporated in the flow chart for the next exerQ.iSe.

2. The statement in'the hint is justifiedtas follows: If X is the g.c.d.

of C anti D, then there are integers m and n so tilt C = mX and

nX. Moreover, m and n have no factors in common. Thus,

m x n x X is the smallest integer, which is;a Multiple of both mX and

nX. Now, mxnxX= mXxnX/X =CxD/X.

0

f7

J /

Solution to
Problem 1

.
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Comment: After functional' procedures'have been studied in Section 5-3, we

will:be able to simplify the fldw chart to:

P,

, Additional remarks on GCD algovilt

Here we present a more difficult algorithm which the teacher may wish to

use as a project for better students.

In connection with the Euclidean Algorithm there is an important mathe-

lmtical theorem to the effect that, given non-negative integers A and B,

there are integers X and 6o that GCD(A,B) = AX + BY. .The problem of

finding the values of X and Y involves some mathematical *eparation.

Lettliy ao, al be the giVen numbers whose GCD we are to find, we consider
wve--

a 'sequence

a0, al, a2, a3,

/
where for each k > 1,

'ak
is 'the remainder on dividing ak..2 by

,,,

ak_1.

The formula r = a - qb becomes

i ak =
t -2

qkak_i = ckao dkal.

That!these c
k and' dk really exist can be seen by

# .
successive substitution

and verified inductively,_ ck = XWhen .ak:= GCD(A,B), :then and
Ilk= Y.

. 7TE6se last 1,n----6k77-d7d aWthe only ones. we:wph to output.
.

A 44
:

r
.-7-, ::

t

,.,
. .

. t1 .:



T3

Clearly,

co = 1, do = 0, cl = 0, di '= 1.,

1-

1,;,

In order to derive the recurrence relation for the. ck and dk we write

out (.1) for three values of -k,v

%be

ak -2 = ek_2a0.+ c2a1

ak-1 ck-la0

ak

Substituting th'e first two lines intq the -third

Rearranging terms

t Thus,

ak = ck-2a0.+ -2a1 - -k' k-la0
dk_ial).

ak
(ck-2

- qkck_i)ao + (dk..2 - gk-1)al-

c
k

= c
k-?

- q
k
c

dsk-4 cikdk-i

We now see that only the last two es and the last two d's are needed:

Letting the latest ck be 01 and the next to last be C2 .(similarly for

the, dit) we have the' assignments:

Here q denotes
qk.

HOLDC
4

Cl C2 - q X Cl

C2 HOLDC

A complete flow chart is given below.

68 ,

7 4.
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/Flow chart for computing/GOD of ,A + B,and repreaenting,

CCD(A,20 = AX + BY.

A, B

Cl e-0

D1 4:- 1

C2 4- 1

D2 e-0

2

"If A is", A, "and B is", B,

"thqn the greatest common

divisor of -is"

( A <. B

T 4
4- A

A 4- B

B r

q ,(A/B]

2,114.- A - q X

6

r =

. .

4

A 4- B

B r

HOLDC Cl

HOLDD 4--D1

C1.4- C2 - q X Cl

Dl 4- D2 - q X Dl
C2. 4- HOLDC

rp HOLDD

69

I 75

T3

Note: In this

rithm we treat B as

the divisor' instead
of A. This is just
the reverse of the
way we did it in
Figure 3-14.

8

B, "which can be
expressed as ", Cl, r,-

. "times A plus", D1,
"times B."

STOP
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':Answers to Exercises 3-2t,-Set C

'1'

1.

2.

xl,y1 x2,y2

2

x2,y2

length (-

1/(x2-x1)2+(y2-y1
2

"THE LENGTH.

OF PQ IS",
ength

4

Ot . Input
Test.
DEita x2, y2

1 -3, 2 , 1, 5

Test
Input

Data x1,;y1, x2, y2

A 1 4 , 2 , 3, 5

2 2 ,i5 , 2, 6

- ,

2.

76°
,

Output (box 4

The length of PQ is

Output (boXes',5'or 6)

The slope of PQ is -3.0

PQ is parallel to the y-axis



..

Comment on 2

In realistic problems one rarely seeks a check for true equality of two

rearnumbers (box 3). When the numbers being compared are measured data or

computed values, some uncertainty is associated wi0 each value. Instead,

tests like

are Used, where epsilon is some small value determined by the problem analyst

or programmer. We shall ma!)use of these ideas in Chapter 7.

START-

1

xl,yl x2,y2.

2

Lxl,y1,x2,y2

3

delx

6

s e-
x2 -xl

y2-y1

T

dely e:s>tdelx

1

gdelSr =",

"dely

8

delx =

9 F

"NO SUCH

VALUE
EXISTS"

.

T

10

ANY REAL

NUMBER
WILL DO"

.
..Input Result output (box 7 or 9 or 10)

Test
Data xl, yIr, )c2, y2 delx

1 4, 2; '3, 5, ;1. dely = .3

2 4, 2, 4, '5, - .1 No such value exists

3 '4, -5, .0 , Any real 'Amber will do

71.

7 7
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4.

y2 -yl
x2-xl

7

.(xl,y1,x2,y2
2

dely

13

dely

4

N

delyely
9

delx

8

"delx ="
deli

10
T (dely - 00 T

F

11

"NO SUCH
VALUE
EXISTS"

12

"ANY REAL
NUMBER,

WILIL DO"

Input Result Lutput (boxes 8, 11, or 12)

Test
Data

xl, yl, k2, y2; dely

1 2+, 2, 3, 5, 0.3 delx = -0.1
2 4, 5, 3, 5, 0.3 No such value exists

3 4, 2; 5, -0.3 delx = 0.0
4 4, 5, 3, 5; 0.0 Any real number will do

4

4 78 72

s



5.

tr.

xl,y1 x2, y2

12° 1

xl,y1,x2,y2j

11

x

F'

s y2-y1
x2-xl

yl+s x (x-x1)

9

"NO SUCH
VADJE
EXISTS"

F
10 1
"ANY. REAL

NUMBER
WILL DO"

Test
Data

1

2

3

lnput

xl, yl, x2, y2,,x

4, 2, ' 3, 5, 7

4, 2, 4, 5, 4

2, 4, 5, 7

Result output (boxes 7, 9, or 10)

Y = 7
#ftauf

. Any pal number will. do

No such value exists

73,

7 9

a

i



6.

s<
x2-xl
y2-yl

1

(x12y12x22y2

2

xl,yl,x2,y2

13

Y

- 4 10

(yl = y2)2

Y-y1x +
s

'x="2 x

11 12

"NO SUCH "ANY REAL
VALUE NUMBER
E)isTs" WILL DO"

Input

Test

Data
xl, yl, x2, y2, y

1 4, 2, 3, 5, -4-.0

2 4, 2, 3, 2, -4.0

3 4, 2, 3, 2, 2

4 4, 2, 4, 2, 4.0

Result oatput (boxes 8, 11, or 12)

80 74 les

x = 6.0,

No such value exists

Any real number will do

,No such value exists

S.



7

"PQ DOES

'NOT INTER-

SECT x-AXIS"

1

2 1

xl,yl,x2,y2

3

(xl = x2)

4 IF

Cyl y2l

5
IF

"x-INTERTPT
IS", xl

10 12

"y-INTER-
CEPT IS",

Y1

"PQ DOES NOT

INTERSECT
'y-AXIS"

NI,

Test'

Data

1

2

3

Input

43 yl, x2, y2

4, 2, ;1 5

4, 4, 5

4, 2, 3,

4.

T3 q.

Result output (boxes 9,10,or,6,7,or 11,12)

x-intercept is 4.67
y-intercept is 14.0 .

x-intercept is 4

PQ does not intersect y-axis

1
PQ does not intersect x-axis
y-intercept, is 2.0



TS.

1

(xl,y1,x2,y2

2

xl,yl,x2,y2

3

(xi = x2)

s 4-2Y2-Y1
x2-xl f

5

J

xint E- xl- X1
s

yint< yl-sXx_l

10 .

"PQ DOES NOT
INTERSECT
THE x-AXIS''

6

xint xl

yl x y2"<

- 7 T 4

tx-INTERCEPT
IS",

xint

8

xixx? <

9

"y-INTERCEPT
IS",

'yint

12

At4 DOES NOT
INTERSECT
4THEHy-AXIS"

Test

Data xl,

Input

x2, y2yli,

Ili 1 4, 2, 3, 5

2 1., 72, 3, 5

3 -4, 2, 3,. 5

4 4, -2, 3, 53

/ 5' ,4, -2, 4, 5

Result output

;

(boxes 10,6,8,11,12)

PQ does not intersect
0 PQ does not intersect

x-intercept is -2.0
y-intercept is 2.0 .

PQ 'does not intersect the x-axis
k- intercept is -3.71,

x7.intercept is 3.714
PQ does not intercept.the

x-intercept 1qk 4.0
PQ ,does not intercept Lice y-axis

82 .t7.6

the, x-axis

the y-axis
/

y7axis

1

7

,;
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S.

exercises 3-3

)

Commenlbn Exercises 1 - 7

We regard this as another ke' exercise set because of the practice to be

gainedin synthesizing the_flow chart from verbal statements of fairly coin-
,

plicated conditionals. As many of these as possible should be worked.

Exercises'like these would be excellent for tests. They are easy to make up.

A minimmaisubset to be assigned would be 1, 3,"4, 5 or 6, and pdssibly 7.

Number 7 should not be assigned unless it is preceded by 4. The companion

exercises-in the language manual should also be assigned.

Comment on Exercises 8 ancr9

r

0

.4.

These are the revAt.e(O?_Exerdises 1 through 7. The student is now

challenged to take a'fltw-chart of a comp:4nd condition and come-up with a
,,,..

, ,
corresponding gedMetric region determined, by one of the two exit§,fraethis

' e

condition. At least one of these exercises should be assigned, and a test

question of this kind is recommended. °They are easy to invent.

0

I

4

.10.

e

C_
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4

\

\
.

I

\

is,\\

1(r

\

r.

\

1

.e;2,2
'-'0

-.1

Z
\

\\

1

s

1

,,,,\
0

r

4)'
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10.
START

',f

ttl it

1$st
Nita

2

> 0

7 r.

0

< o

"4"

Input

xl, yl

0, 2,

0, 0

s,.

6

"? LIES
ON THE
X-AXIS"

F

5
"P LIES
ON THE
Y-AXIS"

13

"P IS'

THE
ORIGIN"

N..,

10

Y1

=0

.4

o

>0 ,

Result output (from boxes 8,9,11,12,13)

P lies on they -axig

'P lies on the y-axis
P is the origin'

P lies on the x-axis'

1

I

2

.81

4

9
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11.

COmmelit'

Boxes 4, 5,A6 and 7 can be alteinatelyrepresented as:

4.0 Illu/ stratimg,tbat asfour-way brand- .

may Vedecompodgd into three 2-way'

5 branches. (In gefigral, an-NiVay

4.1 F- -20 branch may be decoMposed into a chain

of N - 1 2-way branches.)

4.2

o,
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Test,
Data

Input

S M
Output (box 9> 1

I

1 21, 165 0

.2 24, 169 -30

3 ',23, 161 -20

4 27, 188 50

This is the second of these problems rebated to the carnival wheel.

The third problem occurs in SeCtion 3 -5 where we show the student how the

conditional can be avoided using a vector whose four elements comprise the
1w,

scoring rule.

f

ti



Answers to Exercises 3-5 Set

1. The student's claim is orrect. (b) is equivalent, simpler an more

general. If we presume the data values for P1, P2, P3, and Po,"whi-ch

are input at box 0 are 50, 0, -30, and -20, respectively, then the

two flow charts are equivalent. Instead of k'oteinf.used as a test

value in a conditional box, it is use'1,as in the subscript expression

(

k+ 1

Thus, if k were 3, Pk `means P If for P4 we had assigned

-20,s,_the'same value for Pk
+ 1

is printed in (b) as is'pripted for P

inrthe correSponding box 9 of flow chart (g). The same match in values

printed can be seen to hold_tor the other three values wkiich can be

computed for k.

2. Any 4-way point rule can now be devised using the algorithm in (b) by

merely repeating the execution of

values for P1, P2, 1)3, and F.

In' order to chagge the point rule

1) in boxes 5, 6; 7and/or.8.

Comment
-\1*-

,

Flow chart (b) represents a proper use of subscripts in a computer. -In

the nerergroup of exercises we see an example of a poor Use of subscripts.

the algorithm with differe5t data
.000

This is not true for Slow chart (a )-.

we must change the values assigned to.

_3.". 100 times.

4. Once for each time a value of b is encountered which is greater than or

equal to m. It need-not happen at all, or it can happen a hundred times.

5. If box 8 is never executed, then box 10 will be'executed. If box 8°is

executed even once, then box 10 will not be-executed., In other words, ANY

two-way switch. en box 7 isrreached, the value

lue is either equ 1 to 0 or to 1, depending

Is made to behaveI "like

of ANY is tested.. Its v

on 'earlier events.

not be reset to a

times box 8 is exe

Comment: Switch variab

It ie set initially to zees) in box 3 and may or may 7°

lue of one in box 8. It Bakes no difference how many

uted after ft happens once., its-value remain one. .-
- - ,

; .

es are useful for recalling whether or not a certain

earlier event has pecurred, In general, whenever a certain event occurs,

"Train No. 9 ", the switch is set to an alternate

s changing Its initially;,chosen value. /Now, if ever

know if that certglin event.occurred-,ev n o e-LaX1 we have to

ermine the current-value of the witch by

like the passing
taramarevatx..

value, say 1, t

we nee

do is de

> -ome or tero.

:

64

testing to see if it is
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6. No. It is not necessary for more than one value to be inomemory at any

one time.,

The modified flow chart, before generalizing to read in n values,

is'shown below.

.4

1

ANY

c

b

b > c

8

ANY 4

b

10

'."NONE"

1.

6'

< 100

ANY

. We".coulitzAd the value of n as part of box

boxes 3 and 6, we must replace 100 by] n.
:.. - ' l'-,-,-,,'''

/ s
,.

1 '

ir

I

2 of Figure 3-25.

1

85

Then, in'
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4
8. This problem will reappear as a procedure in Section 5-5

1

more cards?

yes

n, (a{, i = 0(1)n)

=

n n -

n > 0'
F

'6

n, = 0(1)p)

d

n

ote: Strictly speaking, box 7 i

from box 5 could be]led into box .

Idthia_event, if we enter box 611; the value

-not necessary. That

When exiting "fals

of the 'es, because for i

We have separated boxes

we would encounte14, in some F

loop notation", the first el
not made until after the first

is printed.

s, the false exit
" at box 5, n = -1.

of n would be printed but none

)
= 0, i -already exceeds n, so the set is empty.

arid 7 in'anticiTation of the difficulty which

TRANS where ubing the equivalent "implied DO

nt is always taken because the test (i> n) is

item (first transit through the irriplied loop)

86n
trl

ti
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Her4 is a very simple question question and its. flow chart solution;

Draw.N flow dlairt-,for inputting a set of values, and outputting

another set having as its elements th-e absolute values of the elements

of the input set.

Solution:

4

START

1

n,(a., 3 = 1(1) )

F

Xn Sect

boxeS 2,ril 3

( '

4.4

8

-1 the Student could be asked to redo this fOw chart0
together intiOsin i eratiOn bOx.

87

t.

tr.

4
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Answers to Exercises 3-5. Set B

4.

.1. (a) 4, 7 , 2 , -5 , 4

1

(b)

Tot

Current

-.
sequence

\
3 4 5 6 7 8 of K

1 V 1

'2 V

3 1

4 1 1

5 1 .

6 i. 2

7
.

9 i ,
10 i ' 1 .

11 1 V .

12 V
." .1--la

14 V

15 2

16 V . '

17

, 18 3

19 1

20 ,
I

21
,.

a-,, V 1

23 V

24 V 2,
:.I

25 V .

26 V

27
.-,

2-- 3

i ->

'29
. 30 i 4

:34 /,
fil2

. .

. . .r.",
0 4v d ,6,.;.$1-0

This much of the
table is given to
the student.

Appearance of
Scratch pad memory for'

the A vector.

1

2

3

4

A
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(c) 32 boxes

-(d). 10 times . A

. * 3 time's 'or N - 1

3. 13 times

/Comment: One popular way to rate sorting algorithms is by the ndthber'of

comparisons like box 3 which are required as a function of N. In this
,

.

algorithm the number of comparisons depends strongly on the initial

ordering of the data ranging from a minimum bf N - 1 when the data

are in perfect order up to a maximum of ,N3 + 5N - 6 when data are

initially in reverse order*." In Chapter 4 we show an improvement in the
4

algorithm whicH reduces this maximum to N X (N 1)12. Thus, for

reverse ordered data we get

N Number of comparisons

2 2

3 6

4 13 A

5 ( 24.
6 46

In Chapter 4 we shall develtop an aliorithm where the number of com-

parisons is independent of the initial ordering of the data and is

equal to N x .21)/2.

This'exercise is inspired out Qf the need to have the student focus 40"
his attention, while developing an algorithm, on the question of whether

sabsc ipted_variables are needed. ..Certainly non are needed in answering,

part (a) and (b). At,other times they defdnItel are needed, as in

part (d). ?

...89 ...,

. 1. 95
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. Answers to Exercises 3-5 Set C
111

(a) We-can use,the Sort flow chart of Figure to solve this problem..

In bog:
t
21 IT could specialized to 101 and in box 8 the outpul.

Ac tcould, changed to d

'MEDIAN IS",A51

1

Subscripted variables are essential fore.fin internal sortingsalgo-

rithm like the one in Figure 347. In other words, it is necessary

"to input all the.eges into, aovector in memory and then sort.

(b) The mealtan of a set of. N A even or odd,' can be defined

as.the average of two numbers according to this formula:

MEED = .5 x,.(Ar
11+1,

`r A
[Nsi.d

2

.

If N is °CId, [-TN+1] and *6N Ellie equal and both would give
wer-

+1,
same

,N
ame value as the .variable we called MID = . But, if 'N

. .

is even,: then
N
- is integral and E.+ 1 . reaches the next integer
2 2

after
[N+1

1 'Using this expression the flos2/ chart can 416 e rewrittehr--

START

(N, (AK, 1(1)#)

MID [i;.]+

MAD <-

MEED .5 x ,(ADD + AMID

"MEDIAN IS ",MEED

9 6 90



1
.Any more

orchestras'

yes
2

0

N, (AK, K ,,- 1(1)N)

K.(- 1

4

AK K+
IF 6

4- K + 1

7

K <

F
8

MID E- [2]

9

MIDx2 - N

COPY A.

AK
AF

AKti (-COPY

T- (even)

r 1.0

IF (odd)
,11

MAD

MAD (-MID 1

12

MEED + Am AD)

13

"MEDIAN AGE-IS", MEED,

"YOUNGEST IS"; A1, .\

"OLDEST IS", AN

11'

Jr

a.

91

r

r-
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Exercises 3-6

Comment: These exercise6 involve simple loops operating on elements of a row

or a column of an array. Exercises 2 through 5 are fundamental row

operations of matrix algegra. Working these will be very helpful in

understanding some of the steps in the algorithms described in Section 7-5

(Simultaneous linear equations).

Answers to Exercises 3-6

1.

1

COL-7UM (- 0

2

3

= 12

F
4

COLSUM. E- COLSUM + P
I,

T

6

I + 9

CI

5

22)

COLSUM

8

NEXT STAT

^AAA/

918 92

.

Alternate solution:

1

COLSUM 0

2

COLSUM (--'COLSUM + P
I

4

<22
I

I 11

6

COLSUM COLSUM.- P12

.t

-e,







'`Chapter T4

LOOPING

The four sections of this chapter are

4-1 Looping

4:.2 Illustrative Examples

4-3 Table-Look-Up.
_ .

4-4:. Nested Loops

3
Outline of the _Chapter

4-1*The1ability to deicribe repe 'tive events or loops in a convenient

unambiguous Way is one of the most important skills in programming.

.Here students develop some insight into what loops. are. Although there

,is no single form which all loops take, there is one kind of loop so

.common.as to merit the development 'of shorthand techniques for describing

it. This is the main reason for. the "iterat ion bdx" introduced in this
A

'section and employed numerous times thereafter in this text.

.)

4- ,This section includes 'mart( s 11 problems each of which involves a loop

;*;best described using an itera on box.

---.'

j
.. .

4-3 Here we;take up the simpletopic df table-looks -up and treat it in depth.

. qe,lpok at many, aspects Ot this one important prqbleM and bring a number
. . , , ..

of programming concepts into focus.,

-

1.+,4 'We ntroUuce the nesting of, loops or,repetitions. This'is an all important
4

idea. Repetitions frequently come not singly, but in bunches, and often_

one within another. Many operations 'on matrices fall in thiS category.

Sqrtilig does, too.: One ofthe most interesting algorithms in the entire

'text, that of findings_longest`modotope subsequence, is describedat the

end of this iection.' The algorithm suggests the proof of an interesting'

,,theorem about tfie minimum length of a.monotone subsequence. Without first

I "I /

focusing.= the aigjithM, it ig

o .suggest' its'elf'. "

V

,

1 '4

bard to see host they proof would ever

r".

Qr
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Answers to Exercises 4-1

2.

IS

,I <- 1-

1 <- I+'1.
". .

F

/

ID, A B, 0, D

1. Check values. Let, I \< 5

Input

ID A' C

,

3

4

5

3 4 5

6 8 , 10-

9' 12 15'

12 16 20
15 20

mpu.:Itput

I; , 3, Y, 7.07

2, 6, 8, 10, 114,.14

3, 9, 12,. 15, 21.21_

' 4, 12; 16, 20, 28.28
A". '5" 1,, .' 20, 25, :35 35

1

:9
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S. .0

Alternate
.
solution using subscripts*:

2

I i-- :
6o,

I (-- Ili- 1)
1 <

T

, LTERiti, S

S +JILT

COPY (f-LTEAM.

LTERM + NLT

NLT vi-COPY

I

Comment:

The coMpuked results art:

1, LTERM S

1 2 1'

2 3 2
:

3 5 4

4 ,8 7

5 13 12

6 21 20

etc.

The ,check value I < '5

output, 5, .13, 12 ,

.
.

Comment:

'r

Computed results are:

I F
I

SI-2

3 0' 1 .

. 4 3 '2
'5 5

f

4'

6 8 7
7 13 12

8 21 ' 20

'etc;

Notice that, LTERM and S differ by 1 for 'all, I ! Or,- in the alternate
'

solution, F1 and Si_ 'differ by 1 for all I. We hope the- student '11

find,'this to be an interesting discovery. Also notice subscripts are not -

essential in this flow chart. since the first solution does not use them.



L <--i1

L < N
L (- L+1 '7

A

Check values,

Input 5,

N'= 5

M

1, 21, 216

2, 30, 126

3, 24, 621

.-r 4, 15, 261

5, 612

.04

it
. t.

C

7

98°

10

"AFTER", N, "SPINS, YOUR NET WINNINGS

ARE",.'SUM, "POINTS" ,

.*

E3.

I

,a
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Ark

Note on the'carniug wheel:
16

Although we lave not done so in-this , text, one can proceed,to simulate

some interesting experiments for digcovering game-playing characteristics of

the wheel. In this exercise we have suggested that the spins y the sequence

be supplied as data.. It Would be more interesting if the compuier could oper-

ate such data in some random fashion by employing a procedure for generating

random numbers. Such a Trocedure would "generate" a,value of m each time it

calaed on. Values of m might be uniformly,distributed over a given range

or, more realistically, distributed normally over the same range about some

mean value pf m which you or your students(couId vary. Some useful references

which will suggest algorithms for generating random numbers-are:

1. Problems,for Compuer Solution byF. Gruenberger and

John Wiley, 1965. :See Problems E7 Ell and'Ely.

2. A Fortran IV Primer by-E. Organicic, Addison-Wesley, 1966. She

- Problem 5 {Simulation of Experiments).

The Language of Computers by G: Geller, McGraw-Hill, 1962.

See Section 6.3, "Random Number Generators " p. 72.

j

5;

: ..-

i E-1
i < N

i (-- 1+1

WAGES (--R. XT.
1 1

PAYROLL PAYROLL +, WADES

7

99

g) ;
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AnsWers to Exercises 4-2 Set A

L

3

9

.

I (--I+ 1
I < N

COPY (--P-
I

PI (-- Q.
I

Q
I

(-- COPY

T2

1

1

c

L (.- 5

I 4--- I + 3

I 4 N
.

2 1

COPY (-,P
I

',1]-1 <- QI

Q1 .-- COPY

r

.

F

4 1

*s

.

I < N
F

..

COPY- (- PI

PI (-- Q
I

Q-
I

(.- COPY

1

Immat ial whether N is odd or even.

1

ND2 *- N/2

1

1 ,-1

I (- I + 1

1.<ND2

(

F

(3 1T

Q1 <- PI

1

1

An alternative, though less

efficient, way of doing it,:
. .

1 00_00

1
,

1

I (-- 1.

I, (.- 1+ 1.

I < [N/2)

i 2

[

.

e

.,

0

e
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NO2 N/2

I I +'1
I < NO2,

NO2
p

+ I

An alternative, though usually

less efficient, way of doing it:

/

I (-- 1

I < 11/2ik
I (- J + 1

/ Q
I

PN/2 + I-

F

. T4 (.

6., Perhaps the "cleanest" approach,

logically speaking, is to first.P*
determine gg N, is even or odd and

then act 'accordingly.
.*

1

NO2B (--(N/.2]

2

I (NO2B -
N/2) T (N EVEN)

F. (N ODD)

3

NO2B:+ -K NO2B

.

6

. 4 4/`

I (- I +1
I < NO2B.

F

5

Q_ (- P
K+I

7.

I N

f-I -1
I > N- K+1

F4

1+2 P

Note that I past b incremented negatively

here--td do it any er way would be self e

;destructive.

101' I



, .
For example, suppose this flaw chart is used:,,. . , .

,

`

1

I <-; I .+21,

PI
Pte \

\
N.." .,...
.By virtue of desk ructive read in, the pair of values originally ,

assigned to PN..K....1 and PN-K+2 would be repeated over and over

again. 'See Fig. 4 - '13..

Beforlre.move

.1,e102(i

After the', disaster

V -e



8(a)

SUMCUB 4-- 0

2

< 100

(b):

F
3'.

SUMCUB <- SUM CUB 4.. P13

(c)

A

1

SalCUB 4- 0
-S.TIC1EG 4-- 0

SUMBIG <-

2

I (.- 1

I < 100
'''I <- 1 + 1 ,

ti44,?hsto.

3

SUMCUB SUM CUB + P23

I 4

<

/ 5
SUMNEG <1- SUMNEG + P

6

> 50

T

7

SUlfBIG <- SUMBIG

J4;

1
SUMNEG 0

<- I + 1
I < 100

3

< 0

T

SUMNEG SUMNEG + P

. 103

'st



9.

A

1

COLSUM 0

I < 22

3

COLSUM COLSUM + P

COLSUM

NEXT

STATEMENT

1
.s

J (-- 1
J < 27

1J 4- J +

i 2

10.
J 1

J J + 1
J < 27

F

PL, J +

CJ # K

/f2 3

P + axPJ .4- L,J M,J

11 100

4

NEXT

,STATEMENT

y



12.

13. .
/

alternatively,
1 1'

\

50

2 ...-
1 (- N

'I > 1
r4-I-1

3

>50/T'
'

W PI

F

5

NEXT.

STATEMENT

v."

105
ar0

J, I 4.1 1

(-5.0

I (-

I + 1
<

^ 7-

3

> 50

T

NEXT
STATEMENT

r

.



f'

'14.

4- 0

2

f

I + 1

3

I < IM1 and IPII > IT1

T

5

f P .

15. 1

I 4- 1
-, I < N

I 4- I + 1

<M

T

3

T 4-PI

4

K

K+-K+ 1
K < N

o

NEXT
STATEMENT

5

P and PK < M

T 7

T 4--.P

8 I

[NEXT STATEMENT c

4o6
.

7

"NONE"

_a

note: we resume the scan

down the list

77.

P t _

-1 1'1 e

t



16.

17.

2

J. f- 2 -
$J J-g 1

J < N
f .

MALL < j
F

1

SMALL (- QL,

F

4

a



. r

a

Answers to Exercises 4-2 Set B

1(a)

2

((xi, i = f(1)N)

A

NUM Xi - A

$ 5

J 2

a SF J+1
J < N

,-^

NUM +- :NUM X (ICJ - A

NUM

Check values.

Input

kr= 5

r,3

x2 = 18

x3 = -7

X
4

= 62

= -19

A -1 22

Output

NUM = 3,614,560

°

114

t 4 7

NUM +- NUM X tXj..- A)

4

Check values.

Input

X1 3

x2 = 18"

x3 = -7

x4 =. 62

2
= -19--

A = 22 K =. 4

Output

NUM = 90,-364

8

J4



2.v THe va ue pf A is no longer needed as inpui. data. may be used in

its p ace' (Box 6 ) . Othetwide, the computation of NUN in 1(b), and that

is identical.

N

2

i = 1(1)N)

DEN <- 1

<- J.+ 1

J <

J

T

6*

F

8

DEN.

STOP

TY.

Check values-.e
sv

Xi 3

x2 =18

= -7X3

X4 = 62

= -19

K = 2

Output

NUM = -61c(,5400

' )

r.

7#; r

)



3(a) Same as answer to Exerciseb .Sdctio'h 4-1.

(b):

START

1

, = ) 4 )

2

SUM 4 0

L 1

I, 4-- L+1
L < 1000

O .'I

6

m s - [1'14-4 )e 4

SUM 4-- SUM + Pk.o.

7

sum > cv

Check values.

,(

8

Input Use data 'cards from

5

S

21 CV = 5

30

24

15

Ex. 4; 4-1

output 4, 5, 6

N =.

M

4216,

126,

621,

261,

612,;

It



Anvers to Exercises 4'-3 Set A J
The same 2-point formula- fora straight line is

Applying this, we have
.

yl y2 - yr-X (x -x2 - xl

- Y
YINT (

I
- XI -1) X (A - -Y. I-1I I-1

whire we have let y = \YINT

Yi II-1
y2 Y

xll=
x. = XI

and x A :
,

We may then replace Box 9 of Figure 4-22 with

Y, - Y,
YINT ( -L-j") x (A - X_ ) + YXI - X1_1 1-1 I-1

vs'
f

10

A, YINT

, 1 I 7
t.



Answer to E4ercise 4-3' Set B

The new Boxes 13 through 17 are to be added as shown:

I

HIGH = 1

F

13

XLOW' A

15 t

(1 XHIGH = A 2)

14

F

12

T *- LOW

1

XLOW, YLOW

A,

XHIGJ, YHIGH

-4

T *- HIGH

17

"F( ",A,") is",

"on the nose"

s 112

r



'Answers to Exercises 4-4 Set A

-e,

>

O

BIG 4- 0

I < M

0

3

.'J 4-1
J < N

J 4- J+2 .
I..

411e=IMPIGP
I J

BIG

of

2.

4

.64

LARGE

ROW 4-

COL 4- 1

<-1
<

I+1:

t.

3

J 1 .

J<
.

J I+1,a-
4

LARGE < P

5

'41

LARGE 4- PI
J

ROW 4-4

COL J

6

LARGE, ROW, COL

,Check values .

Card: 1 2 3 0

Card12 0 7 9

Card_3 12 10 19

Card 4' 18 16 12

Output

LARGE, ROW, COL

19, 3, 3

113

1 1 9'



3.

.

LEAST f-..13
1 2

Z TALY

<- 1+2

I < M

3

J 2

J+2
J < N

(PI,J °

4

6,
LEAST > PI,

J

F

ZTALY ZTALY +

'7

LEAST f- PI

4.

,LEAST, ZTALY
's

Check values.

Input

se cards from Ex. 4-4, 2)

Card 1 ' ta 3 0

Card 2 0 7 9

Card 3 112 19 19

-Card 4, 18 34 12

Output

LEAST, ZTALY
ti

3, 0



I<-2
I <M

f-

J J+1
J < N

3

+ T x PIJ

5"

f-

fs- J J+1
J < N

2
MIN <- PI

ROW 1- 1

I < tvi

0 'T'

(MIN > P

MIN <- PI

ROW <- I

MIN, ROW, Jf

1'

-1

or

1
A better method

J +- 1
...

J < N
J <- J+.1

F

T

\2
TEMP <- P X T.1J.

I -.'2

I+1
I < M

4

P 1; + 'EM'
I J I J

ft

Check values,

(Use cards from,-Ex. 4-4% 2).

. -

Card 1 2 3 0

Card 2 0' 7 9

card 3 12 10 'F,19
Card 4 18 16 1

Output MIN ROW

2

1 2

0 3



< M

/

6.

1.

SIIMI 4- 0

2

4- 2

,

J 4-- 1

J10.7+1 j < 1
F

SUM1 SUM' PI J

7

.9-

1

-S,UM2 0

I

I < M

T

J I+1

4-J+1
J < M

4

SUM2 4- SUM2 + PI, J

Comment on No. 6: If the student draws Box 2 as P

2

F changed from 2

it is not wrong. No entry for 'row 1 will

be taken anyway. When Box 3 is,eXecuted

for tilfirst time, J is set to 1 and

then the test, J < I, is made. Of'course,

it will be false 'because both I and J

are 41...We then exit from the inner loop I

immediately with no execution of Box 4.

. 122

r



8.

ANY +- 0

J M
)1/

J > 2
7 ANY

+- J-1

3

LAST
P1 J

4

I 2

<

HT 5

J
> 2 x LAST

F

6

LAST (--P
1,4

PI
I, J

,J'

ANY f- 1

Seardhing for'Figs

Check values. (Use last3.cards froth EX. 4-4, 2)

Input Check,values 6 x 621'4
Card, 2 10 7

Citrf 3 ,12 10

Card4 18 16 12

M =3
Output 19 2 3

1 10

"NONE"

11

NEXT

M,= 6

Card 1 2
Card,2 2
Card 3 -7
Card .4 8

Card 5*. 6

Card 6 4

Output

n7.1 2 3

.PI,J

l:, 0 3 2
3 2 7, 6

2 -3 8 9 4

1 J+ / 2 -3 8

5 2/ 1 1. 1'
-2 /1 1 2 1

I \ *Y-' ;-"-

6 2, 6

8 4, 6
9 3, .5

. 7 2, 4

2 2 3

.17



rf

Alternative approaches to solution of Problem 8.

(a)

(b)

r -

1

-

4

I <-1 .

I < 7-1

I < I+1

IT 5

2 x
I+1,JI

yzI

to *box 2

IT 6

IJ
I4-- I+1

[PIG, I,
' 4

ANY <-1

J <-M

J <- J-1
J > 2

I -2
< J

3

PIG <- IP
I -1,J

F

5

JI > 2 x PIG

I
I,J'

, J

Y. 8

124 118

.+P



Answers to Exercises 4-4 Set B

1. 8 multiplications each time Box 4 is executed.

Box 4 is` executed 900 times, sp the answer is. 8 x 900 or 7200 times.

2: Only 9 different valuearof H3.

'3. fr Only, 10 different values of T3I

1

H+1

1

H<9

2

HCUBE H

T 0

(--T+1

T <

4

TCUBE

U 0

U < 9

6

100.x H + 10 X T + U --='H,CUBE + TCUBE + U

T,

1

s

119



One could even furher reduce the number of multiplications as.shown
on the next flow chart. It would be interesting to see how many students
suggest this further improvement on their ow4. Note that in making these
changes we add boxes to our flow chart which in computer programming
means more instructions in the program.

H k- 1

H < 9
H 4- H+1

H100 4- H .X 100

T (- 0 alit,

T < 9
T 4- T+1

If, 6

T10 (--T X 10

7

U +- U+1
U<9.

F

er.

r

IT

6
H100 + T1:0 + U = CUBE_ + CUBE

T
+ CUB

9
H, T, U

NUltipliCat:ions: 20 + 9 90 = 119
(Box 2) (Box 4) {Box 6)

versus 7200 in the original algorithm.

126 0



4

)kr

0

I <

CUBE
I

4.- I
3

i.
H 4.- 1,

<9

T

T+1

U

U+1

T <

5

u

r-T

6

100 "X H+ 10 XT +U= CUBEH + CUBE T+ CUB

T
7

B, T, U

4-

Multiplications: 20 + 2:X 900 = 1820 versus 7200 in, '.,''

(Box2) (Box 6) ,original flow chaA.

. , i

I

121 12-7
Tfl '1

r



T4

4

= '7. Solution. The main mathematical point here is the_triangle inequality

that the length of one side of a triangle is less than tilksum of the

lengths of the other two. Let I be -the length of the longest side of

a triangle, J the length of thb second longest, and K the length of the

shortest, so that

1 <K<J<I< 100.

The triangle inequality yields

J > I/2 and K > I - J.

We wish,to count all triples, I, J, K, subject to the above conditions.

Once. I and J are chbsen K may run from I + 1 to J, inclusV(

There are thus J (I:- J 1) + 1 or--2J - I triangles' having the giv

values of I and We sumthis value first for J between (I/2] + 1

and then for I between 1 and 100.

S

I

(b)

1+[ 1/2]

J J + >.

I - 1 00.4
'<:100II-

J 1+[I/2]

J J + 1

K I-J+1

K K + 1

J < I

'J T

K < J

IT

5

PP+I+J+K

8 122



T4

(c) In the solution of part (b) replace P by S in Box 1, replace the

condition in Box 2 by "I < 50", the'condition in Box 4 by "K < J

and I + K < 100". Replace the assignment, in Box 5 by "S

Replace P.-in Box 6 by S .

(d) In the solution tp part (b), replace the conditions in Boxes 2 ana 4,

.respectively, by "I < 50", and "K < J and I J + K < 100'11.

Comment On the solution to Problem 7

One drawback to the given problem as an example of a computer problem is

.that formulas for the solutions can be generated by elementary techniques.

Th1s5 in part (a)Zif we replace 100 by 2M in order to generalize we have

am
S = z z

I=1 J=1 + (I/2]'

2M I 2M I
= 'E E (2J-I) + E E (2J-I)

I=1 J=1 + [I/2] II-1 J=1 + [I/2]

I odd . feven

r.

M 2H-1 M 2H
= E E (2J - 2H+1) + E E ,(2J - 2H)

H=1 J=H H=1 J=H+1

= (2H
2
+ H) 2M(M+1)(2M+14 M(Mil)

6 2

M(M+1)(4M+5)
6

which, has the value] 87,125 for', M = 50 and this it the answer to part 4a).

For the other parts we obtain the result by similar but slightly more difficult

computations. In Chapter 5 Ve return to thib problem, replacing the word

4distinct" by "dissimilar" (i.e., no two'similar). This slight modification

yields a problem no more difficult for a machine, but it is no longer'so

'easily accessible by means of deriving a formula.

J

1 9 9
1,4



T4

Ariswer tO-Exercise 4-4 Set C

The student is entirely correct Pn both his claims. Students may have.a

little trouble following Figure7:43.1 The treiUble spot students may encounter

is accepting the concept that

K K

is a legitimate initialization for Box 2. It is valid and is-a usefUl

in this particular version of algorithM.

The algorithm in Figure 4-33 is equivalent to the one in Figure 4-32-and. ,

is more efficient in that unnecessary repetition of the computation of ,r-Ls.

avoided.

Answers to Exercises 4-4 Set D

1

N, (AK, K = 1.(1)N)

2

K < N

T
I3

AK > AK+1)

T

COPY (-AK

AK AK+1

(- COPY

5

(AK, K = 1(1)N)

1:3 0 124

Check values.

Input N = 6 -

Al A2

4 6

Output

1, 2,

A3 A4 A5 A6

1 3 5 2

--
3, 4, 5, 6

4

)



al

2(a) 5 times (3 times for Box 4 and 2 times for. Box 7). You hould urge the

students to trac-etTftugh-Figure 4-34 until they oan g t the correct

is who haveanswer for thiT6FTF-Someother set of data. StuIle

difficulty should be asked-to review the tracing techniques which they

used for Exer4 cise.1(b) Section 3.5 Set B.

(b) 3 times times for Box 4 and none for Box 7)

(c) 6 times (3 times for Box 4 and 3 times for Box 7)

N x (N - 1)In general, for N numbers initially iA reverse order,,
2.

comparisons are required. This is for the worst case. It is far more

efficient than the primitive sort for which N3 + 5N - 6 comparisons

were required. In the most favorable case (where the data is already

completely sorted) both algorithms'require N - 1 comparisons.

3. Box 4 Should be

BoxVshould be

No other changes are needed.

4. Claim (a) is correct. This is a perfectly good algorithm for sorting in

ascending order,(Ittstbeen called the "push down" method because the

first largest number is pushed down to,4he bottom of the list, then the

next largest is pushed down to a point just above the largest, and so

forth'..)

,N x (N - 1)
Claim (b) is false.

sons regardless of

4-34,requi41 this

.order inpunata).

The push down method requires
2.

oompari-
.

the initial ordering exhibited by the data. Algorithm

number of comparisons only, in the worst case (reverse

A



Answers to Exe140.410 4-4 Set E

(a) Change all B's to C's and WXINC's to MAXDEC's.
, ,

CO: Change Box 4 is read:
'

Q

3

(

Either AJ'S AK or Aj > AK.

'If Aj < Av then AK can be tacked on the end of the longest monotone

subsequence ending with A. Thus, BK Bj. Similarly, if Aj > AK,

then C
K
> 0

FroM Problem 2 we see that for each integer I from 1 to N there is

a corresponding pair

(13I, CI),

and no two pairs are the same. Let,'M be the length of the longest

monotone subsequence. Then each,of the B1 and the CI- ii less than

or equai to M. The number of possible different pairs (Br CI) ais,

then M2. Since we have N such pairs it Aust be that N <,M2 (i.e.,

that m > IN).

Al A
2

A3 A4 A5 A6 A7 A8

7 8 9 4 5 6 1 2 3{

indicates how we may, for any value of N, construct sequences having

no monotone subsequences of length as great as 1 + vt. Thus, we

cannot increase the lower bound of A for the length of the largest

, monotone subsequence.

. 4. The job of finding a maximum subsequence consists of carrying out these

twci steps.

(17) Search backwards from BN looking for the first vague, BK, which

is equal to MAXINC. The corresponding value of AK Is the head

of subsequence. Print out this value ,A.
A

(2) Now resume the backward search of the B=s forithe first one whose oss

value is one less than that of the previous BK and print the value

of the corresponding element in the A vector.

r Repeat the process of searching backwards for successively smaller

4, 4

02



1 44)0104'-

N

'yalues of 'BK, printing out:the Corresponding value of AK. The last

value of A to be ps rinted 411 be the one for which the value Df BK

is -one-. Here is the flow chart.

<I. <Ai
.

I (-- I-1

I > 1
jot 7., find and print the

( "head"

K 4 MAXINC - I

K K 1

K > 1_
(-- -

(:B K
L

F

12711/43 s)

**".' ako

Iv



4

Sample Test Questions

The following questions do not constitute a test. They are offered to the

teacher as typical or appropripte sample Lest items. In some cases a dingle

item would be 6nough.for one test. The chapter designation.on

that the item can be used any time after the completion of the

1. (Chapter 2) Given the length (a, b, and 04 of the three

triangle, the area can be determined by Heron's formula:

where

Area = s(s - a)(s - b)(s - c)

s =
a* b + c

' 2

a question means

indicated chapter.

sides of

Draw a flow chart which will compute M such areas for given lengths of

the sides and then stop. Assume you have M data cards, each containlng

'three positive numbers representing thp sides of one triangle. Each line-

of output should contain the ,count, N, the three lengths, and the area.

Solution:

1\

a b, c

+ b + c

5

Area 1 sx (s-a)x(s-b)X(s-c

6

a, b, c, Are

(N - M

F8
N + 11

1291



- b

2. (Chapter 3)

A surveyor measures the sides and angles (in degrees),of a quadrilateral

as shown on the figure below. Construct

the ,quadrilateral is :

1. , a square;

.2%, a rectangle ,(but not a square);

3. -4 rhombus (but not a square or
a rectangle);

4. a parallelogram (but not .a
-2, or 3) ;'

5. a trapetoid (but not a 1, ; 2,

3, or

6, none these.

a flow chart to.decide whether

Output an appropriate ,message In. each Base .

olutidn:

,

' : A /3,,

I5
=

3 .
Cb=360- ( a+b+c ))%1" ,

T4'

T
(a - 90..)

10 11 12

4 '7 F
b+c=18O

13

"SQUARE" "RECTANGLE" "RHOMBUS"

I .1
r.

'PARALLELOGRAM"

130

135

"TRAPEZOID"

8

a+b=180)

F

V 1i.

"NONE OF .

THESE"

A

a.

At-



gr.

0
3. (Chapter 3 or CWIpta4 4

- .
. i

a. Draw a flow chart for computing the sum of the-reciprocals of the

first 5000 positive itiegers.

b. Odd to this flow chart a mechanism for printing out the number of
-45

terms used when the sum first exceeds 1,'''first exceeds 2, etc.

Solution; (If giyen following Chapter'3)

(b)

5

T

h' K4-1

I

131

2

1SA--Sq
n

3

(jg <5000)

F4

S

4

gis

O



(Note to teacher: If given following Chapter 4, iteration boxes would,
be used as shown below.)

2

1

ne-n+1
n < 5000

O

Sits

.4

0

r 4

4

or. NeN+1
N < 5000

F

T

S +

4

K, N

6

112

.131

K+

0

7'
S

STOP



f

1

4. (Chapter 4)

Most of us often have to "make change". The problem is to draw a

flow chart for malsing change in the fewest number of bills and coins.

You should output the names of the bills and coins actually appearing in

the change together with the number of each. Then loop back to make change

for the 'next transaction. We have started,you*Off in the partial flow

chart below. Complete it and answer the questions below.

I a.

b.

1

,NAME14-- "HUNDREDS"

NAME2*-- "FIFTIES"

NAME
3
4-- "TWENTIES"

NAftE44-- "TENS"

NAMES 4--- "FIVES"

NAME64-- "ONES"

NAME
7
4- "HALVES"

NAME8*-- "QUARTERS"

NAMES *-- "DIMES"

NAIElir "NICKELS"

NAME114 "PENNIES"

Al 4-10000

A2 4-- 5900

' ,4S -- 2000

A4 1000

A5 4-- 500

A6 100

A7 r 50

A8 25

9
10

5

A3,14-

41

Explain the

(PRICE, PAID

4

PRICE, PAID

5

4-100 x (PAID - PRICE)

R <°0)

F

7

R - 0

connection between and A
i .

Why is. PAID - PRICE multiplied by 100 in Bok 5 ?,

"UNDER-
PAYMENT"

9

"NO
WNW

. In what form should the data referred to in Box 3 be inputl Give

an example.

133 3 8



Solutiow The studentslcontribuion consists of Boxes 10 - 14 and
a ,

1

their connections.
<x

NAME
1

NAME
2

NAME
3

NAME
4
--"TENS"'

NAME
5
--"FIVES"

"HUNDREW"

--"FIFTIES"

-6--"TWENTIES"

NAME *--"ONES"

NAME
7

*--"HALVES",

NAME
8
--"QUARTERS"

NAMES 4--"DIMES"

NAME16*--"NICKELS"

NAME
11

...1-qPENNIES"

2

Ai 4 -10000

A
2
-- 5000

A3N-4- 2000

A
4
-- 1000

A5 A-- 500

A
6

100

T-4-- 50

A8

A 10

A10 5

PRICE, PAID

TTRICE,

PAID
ti

5

IR4,--100,,),x (PAID - PRICE)

CR<0

7

F

"UNDER-
", PAYMENT"

9

"NO

CHANGE"

10

i4-1
+

i < 11

12

(R/Ai]

R R-QxA
T 13

= 0)

F
14

NAMEi,

) is the ,equivalent,in pennies of the'coin or bill called '0

b) To convert the change into pennies.

c) In dollar and cents e.g., PRICE = 3.49; ;PAID = 10.00.

(Note to teacher: Box 11 co id be eliminated entirely or it could be put in

after Box 14. Including this test increases the efficiency of the algorithm.],

134
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(Chapter 4)
,

For the accompattring flow chart:

1) Describe in your on words the values which j will successively

be assigned in Box 4.

ii) Note that for each odd number J, A; is initialized with the value -

,j in Box 3. Supposing that we leave Box 6 with j, having a par-

ticular value, for whatplues of i .will Ai be crossed out (i.e.,

set equal:to zero) in the ensuing loop through Boxes 7 and 8 ?

iii) 'Describe in terms of "Crossed out" the circumstances under which we

leave Box 5 by the T exit.

iv) Give the first 7 output values. Use scratch paper if necetsary.

v) Describe what the algorithm is doing, in your own words.

j.--3
<1.000

3-z1 4

S

O

- . s



Solution:

i; j will be assigned successively

i.e., 3, 5, 7, 9, etc. As lOng a

exit is taken to Box 5. The last

j = 999 The next time j = 1001

F exit is taken.

ii) All the odd multiples of j less

out, i.e., 3,X j, 5.) j, 7 x j,

iii) If Ai = 0, then it has been "cro

be output. Any odd number which

of a smaller odd number will get

by the F. exit only When j is

primes greater than 2, none are

from consideratio )

iv) 2, 3, 5, 7, 11, 13, 17

the odd numbers starting with 3,

s these values are < 1000, the T

value for which this happerts is

and < 1000 .is false, so the

than a thousand will be crossed,

etc.

ssed out" and is not a ca40 e to

can be "reached" as an odd multiple

"crossed out". We will leave Box 5

a prime. (Since there are no even

missed by excluding even numbers

v) The algorithm.is generating the primes _less than onekthousand.

In'Box 1,"2" is output as a special case, the only even prime. Then

a-loop assigns the odd numbers as the components of a vector with the

same subscripts, A 4j. Then the components are tested one at a

time starting with 3. If the component is not zero, then it is a

prime. Not only is a prime output in Box 6, but all_its odd mul-

tiples are crossed out because they are composite.numbers.. Since the

even multiples of odd numbers are even, and hence composite, only odd )

multiples need be considered in Boxes 7 and 8.

r

1.64
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6. (Chapter 4)

Construct one flow chaTt to do all the following:

il

'..

1. read in a number N;

2. read in an array A which has N components;

3. compute MAX, the largest of the, components;

4. compute MEAN, the arithmetic mean of the numbers A

5. compute the standard'devi= ion SIGMA of the set of numbed s, A.;

4

'%

0
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Chapter 15

FUNCTIONS AND PROCEDURES

Overview

One can use the same sequence of boxes in several unrelated parts of

one flow chart (or several flow charts), by writing a reference flow chart

once, and referring back to it in the several places. Section 5-1 explains

what these reference flow charts areand how to prepare,thqm. '

Section 5-2 is a review discussionof the function concept from a 1

mathematical point of view followed by remarks on the function concept in

computing.

Two slightly different types of reference floW charts are possible.

The first is called a functional reference flow chart because the end re-

sult is the computation of a singlevalue, :just as in applying a function,

a siogle value resulted. This type of flow chart is described in Section

5-3.

-*.

The Second type of reference flow chart is more general and is called

a procedure.' Section 5-4 explains the convention we will use for procedures.

04

cedure can aldo be used to make complicated comparisons or evaluations for

use. as branching criteria. 'c'Section 5 =5 sho s F to do this.

Section 5-5 explains how to include alternate exits in procedures. A pro-

°
a

The left section of the chapter,: 5-6, develops several procedures using

character string These have-IOYSI4Mportgneeli-They-ilinstralehow one

procedure can use another'and thueghbit'thebUilding block property of

procedures. Secondly the procedures themselves ayip.l be usedagain in
0,,

Chapter 13.

.
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5-1 Reference Flow Charts

Thd point .of this section is to introduce the idea of producing flow

charts that may be referred to ma times from the same point or from many

different points in another flow c art. Newton's algorithm for the square

root is used. as a means of bringing up this idea with the associated f(ow

chart conventions.

Of course, the square root of A is a solution of

f(x) x2 - A O.

In calculus the student will learn that f(x) can be approximated near x = x0

by a series:

f(x) = f(x0) + - x0)ft(x0) + ?ex - x0)2 f "(x0) + ../

where f'(x0) is the derivative of the expression f(x) evaluated x=x
0

.

If we take only this first (linear) term as a suitable apprOximation,

2
x2 - A = x - A + (x 7 x0) 2x0 .

0

If' x
0

represents our first guess at the square root of A, the x'determined

by setting the above approximationto zero would be closer to the square root

of A. Then:

-x2 2 + A
(x - x0) -

2x
0

2 .-
2x0 - xo + A

t. x - - (x
0

+ 1-)
2x
0

xo

The same argument for f(x) . x3 - A of f(x) . xN - A produces the formulas
,

for Exercises 5-1 in this 'section and Prgblem 6 in Exercises 5-3, Set A.

qkw, whit we are really doing by saying that f(x) f(x0)+(x- x0)fl(x0)
f(x0)+(x-x0)fl(x0)

is to approximate the graph of f(x) by

a straight-line with slope ft(x0) and

touching the graph of f(x), at x = x0.

Then the root of the line (its inter-

section with the x-axis) is ad approx-
.

imation to the root of f(x). Newton's

method is discussed in more detail in-

Section T7-1 in connection with the pro-

cedure ZERO..

14o
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Answers

1.

074

to Exercise.

2.

Alternatively:

'31

3. .Assor,(x)

'T5

7
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Ahswers to Exercises. Set A

Disddssion

It is important that the student develop the habit of recognizing and

repairing all "loopholes" in his flow charts. He should not just assume that

input data will be reasonable; this is especially important for a function or

procedure since not only.is it to be used with many different programs, but

also the input data may itself be generated within the main program. He must

be alert to the possibility of divIding,by zero or taking the square root of a

negative quantity. In this exercises and later ones, possible sources of error

should be pointed out to him if not already seen them. Then a More for-
.,

mal discussion of alternate (error) exits will be given in Section 5 -5.

Z (--f(r,$) + 6t

2.

2

(LRGST>

T
3

(LRGST > Z

T

LRGST Y

6

I

142

147

LRGST +7 Z

113

=,0



3. (b)

LRGST a-14AX(A,13,C)

a

3

LRGST

T5

4. Here as an error indication we set Q equal to zero if the point is on

a. coordinate axis.

t

>0
2

Q 4- l

< 0
Q 0

Q 11.

>4:1(

Q 2

.1%

--A 0

I

Q
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Defining 'dist to be the distance between centers,we have

for dist = 0, concentric circles with

s

infinite points of inter-
section for R1 = R2

0 points of intersection
for R1 / R2 I.

for 41st R1 + R2, 1' Point of intersection
.

for dist = R1 - R2 , point of intersection
4

for dist > R1 + R2, 0 points of intersection

for dist < 1111

for 1R1 - R2

O
, 0-points of inteksection

< dist < R1 + R, 2 points of intersection

AMO, we must check the data to make certain R1 and R2 are positive;,

anerror is indicated by INT = -1. Concurrent
\..

circles are indicated
x

by INT:. 100. i

a

I r

s

r

144

,
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6.

t.

0-i 4- i +1 i<10
T

3

y
Tt-1
g

4

- hi < .0001
F

5

-g (n-1) lX + h

Comment: Here h -i used differently than in Figure 5-7. We have' let
h designate thVother end of the interval in which the root
is known to be bracketed. Thus, if the: test is, passed in box 4,
we know that the root, is within .0001 of g.

. :

,
.
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. We use this problem to emphasize two points.

(1) There are always alternate solutions and generally various advantages

and disadvantages to be balanced before anyone can say which is better.

Our general approach iS to build up a set of tools (subroutines) and,

use them widely. Problem 7(b) illustrates a case where we are better

off not using a subroutine that is already available.

(a) IRATE(n,R,L)

(2)

c--

alternate solution:
1

Comment: The alternate solution looksmuch simplln but n + 1 multiplica-

tions are still needed.

147 .
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a. 

1 
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0 --> HDItbig 

(q) 

AR' 



7 CO AlterWie solUtioU:

*.F

C

0

[SWITCii CI

1

X;-100
Y.4 -l00

e

i < 36

X 4- IRATE(i,1 ,100 )

Y Y 1:125
-

4

X > Y

SWITCH 4- 1

motm

60 x-121=

IT

1,7', X

-SWITCH-

T

9

MONTH

10

I t,

- °

Comment:, This is.Considired an undesirable solution because IRATE it

call.ed 36 times, each time taking longer to-compute.

(Total number of Passes thrOUkh

'36 37 665 as compared with.
2

the firiitsolution.)

1,5 4

box, 3:of IRATE flow chart

36', passes through box 3 of

1

1 6



-For company X

/ 200 = 100 x (1.01)n

2 = 1.01n

log2 = n X log 1.01
log 2

n 7

more precisely

NX = ROUNDUP(n) = ROUBDUP(log 2/log Liu)

= :[ -log2/log 1.01]

/ t

For company Y.

200 = 100 + 1.125 x n

160 = 1,125 x n
100

1.125

NY = ROUNDUP(n) = -[- 100/1.125)

Alterna e solutiln for NX (not requiring logarithMs ) °:

,

X. 4 00

4

X 4.- x 1.91

X > giro

6

ci

NX NX + 1

J

ts, 447,

5 :.

NX, X

,0

150,

155
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Answers to Exercises 5-3 Set B

1.

2.

4

T
r 4- B

B A

A4-r

I 5'

A =, 0

6

r B - (--] X A (.4.:

B 4- A

A 4- r

_ N
We replace box 1 with the funnel, box 7 with the return box and omit box 2

entirely .' It's unnecessary for a functional reference. flow chart.
0

ti

Ys

(



w3. (a) (See remarks-in the TC in Section 4-4, Set B, Problem 7.).

(b) Replace box 6 with

152 ,

157
#



4. We give a 4flow

J

T5
/

hartfor the solutiorx and then provide some discussion. ,

START

I+1
I < 1000

F

T

2

CUB

J (-1 % ''''''

J (- J + 1
J < I

F

TEST CUBE, + CUBE

TEST < 10

T
6

5

K I - 1

L J

7

L -
T

(Vein-esof CUBEL +

TEST

GCF(J,K,L) = 1)

12

I, J;TEST,K, L

'

< TEST

10

L L + 1

8

> TEST

11

K K

13.

L L +.1

K - 1
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Discussion: Box 2 together with box 1 shows us that storage locations

wil4be needed for All perfect cubes between 1
3,

and 10003, .that's 1000

in all. The only other storage locations needed will be those for the var-

iables I, J, TEST, K. and dil;qe also need the reference flow -chart for

GCF (box 9). The number of paiSages through box 7 is approximately 109/6 and -

the total number of akithmetic operations will be on the order of 2.109, a

formidable number! Titese large storage and time demands may be scaled down by

replacing 10
9

in thi statement of the problem by 10
6

. Then only 100 stor-

age locations for cubes will be needed and the number of passes, through box 7

will be reduced to 10
6
/6 and the number of arithmetic operations to 2.10

6
.

Moreover, word length requirements will be reduced from 8 decimal digits to

The only changes n the flow chart will be replacing 1000 in box 1 to

100 and 10
9 in box 5 to 10

6
.

An interesting feature of.-bhe flow chat is that not all the 109 numbers

From 1 to 109 are tested to determine whether they meet the conditions of

the problem, but only those (TEST in. box which already are known to be the

sum oftwo cubes in at least one way. They are approximately 106/2 in

number. We ate looking for integers I, J, K and so that

13 4. J3 . K3 L3

where I is thee largest of these four numbers and K the second largest,

whence it follows that J- is the smallest and L the second smallest. These

observationseitre reflected in b0Xes 6'and 7 and in the test in box 3.

The "see -saw" tecnnigne_disp1upAin,boxes ,10,,11 and 13 will be-apprec=-,
iated after careful study. (If J3 L is too small, increase L, but if .

too large, decreAse L.) pox 9'eliminates proportional combinations. If three

of the numbers K and L have a common factor, then the fourth must

also have this factor since 13 + J3 = TEST = K3 + L3.

The modificationa"required to find the numbers which are the sums of two _

squares (or fourth powprs or fifth powers) in two different ways are trivial.

But, in the case of squares, the limits must be scaled down to. avoid the use

of tons. of paper.

Hooking box 12 into box 13 instead of box 3 assures that if any numbers.

Can be expressed as the sum of cubes. in more than two ways, we will find this
4 ti

out.
'RV
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Answers to Exercises 5-4

1
Discussion: A reasonable

corresponding problems in

might wish to assign only

for the better student.

ABSOL(X,absx)
1.

T

2

absx -x

X < 0

T5

Set A

,selection Could be problems 1, 3 and 4 with the

the language text. On considering problem 5, you
parts (a) and (b).; (c) is a rather, tricky challenge,

absx

2. (a) cxaci(al,b1,a2,b2,a,b)

(c)

cxrault(al,b1,a2,b2,a,b)

(-Ed. X it2 - bl X b2

b (-.al X b2 +%a2 X bl

(b)

(d)

4

cxsubt(a1,b1,a2,b2a,b)

,EL (- al - a2

b - b2

cxdiv(al,b1,a2,b2,a,b)

denom a2 X a2 + b2 X b2

a (- ( alxa2 + blXb2 ) 7denom

b (a2Xb1.- alA2)/denom



(e)

0

4 1

..Cal,b1,a2,b2,oper

2

al,bl,a2,b2,oper

< 0
oper

EXECUTE

cxadd(al,b1,a2,b2,a,

EXECUTE

cxsubt(al,bl,a2,b2,a,
oper =

T
7

C

EXECUTE

lt(al,bl,a2,b2,a,b)

EXECUTE

cxdiv(al,b1 a2,b2,a,

SORT2(K, A, B, ERROR)

ERRORS- 0 K <,

+- 1

1 6

ERROR -.1

3

i <K

4

A > Ai
+

T

COPY +- Ai

Ai +- Ai
* 1

Ai COPY

COPY

Bi Bi
+ 1

1+1 +- COPY

If ERROR = 1 then K < O. A normal1
exit is indicated by,

A

domMe4: In this'Problemsolu-

tloirand in the three parts of'

Problem 5 in the.same set we

have used for-brevity a differ-

ent notation for treating vec-

tors in the funnels of pro-

dures. For the 'student you

AO best write:

sORT2(K,(ii, i = 1(1)K),

(Bi, i = 1(11K), ERROR) .

Or, alternately, the studen' might ,,use the more efficient shuttle - interchange

method of Figure 4-34 to sort vector. A.

156
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4. (a) A negative value of COUNTFAC (b)

indicates N < O.

COUNT(N,COUNTFAC)

0
0

iF

P

1

COUNTFAC 0

BOUND 4 a'
2

K (-1

Kc- K

K < BOUND

F
T

= K X ( WIC)

T

COUNTFAC(--

COUNTFAC COUNTFAC +

T5

K2

PI 7

COUNTFAC (--COUNTFAC + 1 The algorithm is vex/ inefficient

because we must count all the factors

of eacuillber < 1000, _whereas as soon
-1

as we know that a nuMber-has more than

two factors we know it is not.a prime.

157_-
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5. (a) Let ,n -1 indicate

number < 0.

AL1Q,-NUMBER,n, PART6

1

NUMBER < 0

r2

n 1

PARTSic-- 1

3

(NUMBER < 3 )2
F

'BOUND VNUMBER

n -1

4

5

K 4-- 2

K K+1
K < BOUND

3.

F.

6

NUMBER=K x [NUMBER/K])

T -
7

n 4-- n + 2

PARTS
n-1

4-- K

PARTS 4-- NUMBER/K

10

1 RETURN

(PARTS
n-

= PARTS

,IT 11

/remark: See comment on Problem 3.

,

S

(b)

I .-1
I < 500

I 4-- 1+1

Alb

$

158 '-'
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ti



r

5 (c) Let B be an array. B, is the sum

number i.

t

* /
*

*

4
A tabC

S';',

a/S.'

I <-1

I <-1+1
< 500vF

T

EXECUTE
ALIQUOT(I,n,A)

n < 0

F

3
T

T5

he aliquot parts for the

STOP

11

SUM e 0

"impossible"

4

5
J (-1

J <-3+1
J < n

SUM +

T

F

6

J

t

SUM

SUM < I

SUM,
;

4
1/4:

1

a 159_

1. g.

7

T 10

T

a I

12

7

ra 9

a

3.

A 4

5,



T5

* '

Answert to Exercises 5-4 -Set:B

1. LEAST
. (A

I'
i=1(1)ft)),

s

2

i. 4:- 1+1
n

t 3
(Ai 5

RERIRN

4

3. MARKS
(n,(Ai,i=1(1)n) S K)

2.

- .

t'A

.
160

i 4-.1 ,,,

i < n
r'.4-.1. + Li

The effect of MARKS cannot

be achieved with functional

reference because two values.,

S and K, must Ve determined by

the procedure. A functionalref-
.

erence can only return 1 value.

;
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Comment: The three exercises in Set.B can be used tb clarify a point that

is often confusing. That is, when to use a function and when to use a procedure.

The general answer is: If there is onetvalue to be calculated, use a function;

if more than one value has to be calculated, you must use a procedure.

,Since procedures are more general (any function can be written as a pro

cedure), why

ures( Recalls

expressions but 0

that programs to carry out prdures

two kinds of reference methods?, Why not ilways use proced-

ctions, yielding just one value, can be used in arithmetic

ocedures cannot. The added generality of procedures means

must take account of tr2Te most general

case. 4

The following,diagram for the simple operation of squaring can be helpful

in comparing functional references and procedures in clitss discussion.

1

1

V
i( Functional Reference

Compute

01

Procedures

T A2 + )3
2

1 4'

, C 1

I.

1

I

EXECUTE

1 PARZ(C, TC)

1

I / TA - TC e- A + B
/

-

cas6'.a case b ea0e.c

Comparing a functional reference with procedures which can accomplish a
similar action.

161

1 6 .

SQR(AV SQR(B)

- SQB(Q)

EXECUTE

SQRZ(A,TA)

EXECUTE

SQRZ(R,TB

3,

A, B, C

EXECUTE

SQR1(A),

ECOPIS
SQR1(B) .

EXE

SQR1(C)

I
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Answers to Exercises 5-4 Set C

V

0

2.

i < n

a.

3

DBE- GCD(D, I ai )

D = 1

i 1 < in

6
3

3

11627

,I RETURN
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ProblemsS and 4 of this section are very difficdA The teacher may wish
.

to assign them as § project for the student to work on alone or in groups.

students may Spend weeks on these problems. Hints could be given from time

time if the students get stuck. The problem material is rather sparse id

Chapters 6 and 7 so that such a project would give the student something to

work on during the period in which these
t
chapters are taken up in class.

PrOplem 4 uses problem 3 and both use problems 2 and 1. In addition, both

problems 3 and 4 involve other flow darts developed in this

Chapters.

*3

O

REDUCEMOD(n,m,
(ai,i=0(1)n)

(bi,i=Ori)m))

O

< 0

a<n < m

IF

T

2

X 4- GCD(an,bm)

C bm/X

D 4-- a /X

i4-- 1

i < n
i 4-1. + 1 '

4

< m

10

and earlier

5 6

a
n-i

(= C X a
n-i

- D x b
m-i n-i

4-- C x an-i

1 n 4-- n - 1

EXECUTE
DEGREE n, (ai, i =0(1)n)t.

$ 9
EXECUTE
SlpLIFY n, (ai, i = 0(1)n)

163
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DiScussion: REDUCEMOD hhs as its purpose the computation of the remainder

when a(x) = amx
n
.+ a

n-1
x
n-1

+ + a
1
x + a

0
isdivided by b(x) = bmXm +

+ b1x + b0. It is simply the division algorithm for polynomials.

The division theorem for polynomials tells us 'that for any two polynomials

a(x) = anxn + + a
1
x + a' and b(x) = bmxm + + b

1
x + b

0
(where not all

coefficients of b(x) are zero) there are uniquely determined polynomials

q(x) and r(x) so-that

(1) a(x) = q(x) b(x) + r(x).

If degree a(x) < degree b(x), then q(x) = 0 and r(x) = a(x).

The division algorithm enables us to compute q(x) and r(x) by an

iterative process. We illustrate by letting a(x) = 2x4 + 2x3 - 3x2 + 7x + 2

and b(x.)___=_42- 5x i 1. The first step in the _division is shown below.

2 2
3

3x
2

- 5x + 1 2x
4

+ 2x
3

- 3x
2

+ 7x +,2

2x
4

- 2X
3
+
2
x
2

3 3

16 3 11 2
Tx - --x + 7x + 2.

3

2.Note that' we have subtracted
3
-x

2
b(x) from a(x). The next step amounts

to repeating the process with the same b(x) but with a(x) replaced by
163 11 2
x - --x + 7x + 2. This observation will be reflected in our flow chart.

3 3
2 2-

We lee that has for its coefficient a
n
ibm and for its degree, n m.

We could conceive of g "generalized flow chart" component such as

A'

a(x) a(x) - anibm X b(x)

n (-n -

The above process has one great drayback,for computing purposes.'The

dredback lips in the appearance of fractions among the coefficients. The

effec/ ofhis is that our answer Will be annihilated by round -off. This

difficulty can be handled by multiplying the constant be or better, by

b
m
/GCEL(an m), which is

0
3 in this case. Applied to the preceding example

,4 2ithis 'would give:, . 4k .

/
1 -

3x
r
- 5x +.1

A

.

6x4 6x3 9x2 + -21x + 6

6x4-10X3 + 2x2

16x3 -11x2 + 21x + 6.

164
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The net effeet of multiplying a(x) by this-integer constant is,to multiply

a(x) and r(x) by the- sate integer constant (see '(1)).

A As mentioned in ihe statement of the problem, multiplication of our poly-

nomials by rational numbers will not affect divisibility properties.

,Now we show the work without the powers of x being written down (i.e.,

in synthetic form).

S.

2
. 3 -5 1( -6 -.9 21 6

.10 2

If we let C*.-- bm/ACD(an,bu)

the coefficients of C a(x),

on (iii)%the coefficients of

right, these coefficients are

(2)

(i)

(ii)

,0 16 -11. 21 6

and D = a7ACD(a
n
,b
m
), then on line (s.) we see

on line (ii) the coefficients of D b(x) and

C a(x) - DX1-mb(x). In order, from left to

C a
n-i

- D b
m-i

i = 0,1,...,m

ftllowed by

C a
n-i

i = m + 1,...,n.

Now we fix our attention on the flow ,chart for problem 3.

4,
In box 2 we.compute the C and 0. described above. In boxes 3 through

6 we compute the coefficients of the new a(x) as described in (2).

One trick should be noted to avoid confusion. Since the leading coef-

,fidients have been made equal by the choice.of C and D, the leading coef-

ficient of the new a(x) willbe zero. Knowing this. we dd not comrntte it in

box 5 but, rather, leave an as it is. But then we reduce the value of n by,
1 in box 9 so that the erroneous value is eliminated from further considers-

.

tion. This technique is mildly interesting and can be used in other places

and, in fact, itused in Chaptel' 7 in the s4ction on solutions of systems of

' linear equatioss. The "trick" can be eliminated by initiating i at 0 in
box 3'and d'ropping box 7 out of the flaw chart..

.

In box 8 we compute the degree of the'new a(x)* Which may 'by some fluke

have been decreased by more than 1 in the preceding steps. *In bax .9 we sim-

plify aGc). Ann the desperate hope of keeping the coefficients from growing

too large and going off sca

0
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Returning to to box 1 we ascertain whether the degree of a(x) is now less

than the degree of b(x. If so, then we are through and a(x).-is our
.

remainder as observed earlier. If not, Ere repeat the process.

in box 0, if in = 0, then b(x) is a non-zero constant polynomial and

we know in advance that the remainder will be zero so that there is no need to

compute it. If 'm < 0, then b(x) is identically zero and the division can-

not be performed:

A final warning is in order concerning this problem and the next one. In

order to avoid the Occurrence of fractions and the consequent roundoff, we have

called for, repeated multiplication of our polynomials by suitable integers.

The maximum number of times that this multiplication can occur in the execu-

tion of problem 4 is 1 less than the sum of the degrees of the two polYnom-

ia1s. The result is that although our program calls for very little storage

space and relatively few arithmetic operations, bn the other hand, it requires

eripormous word length., This is the price we tgeito pay for demanding exact

answers. But, in this case, the alternative4of rounding is not available to.

us. The result would be completely lot in roundoff.

To give some idea of the word length reqUired, suppose that the degree of

a(x) is 8 ahe degree of b(x) is 7.* Let M. be the greatest of the

absolute values of the coefficients of the two polynomials. Then the maximum'

of the Magnitudes of the coefficients of the new 4(4 after the first pass

through box 7 of the REMUCEMdb program cannot exceed

;m2 ..

A new bound on the size of the coefficients on the successive passes

through lox 7 is Obtained by squaring and then doubling the old bound. Then

on the completion of the program of problem 4, if 14 passes through box 7

are required, our bound will be

or

2 2(2(2( 2 ( 22( 2(2142; )

2
2
14

- 2
14

This is a ridiculously large number but hopefully, in practice, things will,

not turfs out all that badly. Still, they are iikely-to be bad enough.,
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n,ay(ai, i r; 0(1)n),

(b
1,

i = 0(1)m)

2

EXECUTE

DEGhEE(n,(ai, i = 0(1)n))

3,
EXECUTE

SIMPLtFY(n, (ai, i = 0(1)O))

, =CUTE
DEGREE(m, (bi, i = .0(1)m))

EXECUTE

SIMPLIFY(m, (bi, i = 0(1)m))

6

SW o

REEUCEMOD

(n,m,(ai; i = 0(1)n),

(bi, i = 0(1)m))

4 9 4m.'

T4-

8

EXECUTE
REDUCEMOD

(m,.11,(b
i'

i = 0(1)m).,-
at.

i = 0(1)n))

Values of T

= 0
14 >

10

m

<0
15

SW =

16

(bi,i=0(1)m)

17

A=o(1)11)

16172

,



Discussion:' The greatest common divisor algorithm for polynomials, amounts

to this: We start out with two polynomials ,a
(0)

(x) and a
(1)

(x). Then we

Lconatruct -a -sequence-of-peyenals

a(0)(x) 8(1)(X), a(2)(x), a(h-1)(x), a(h)(x)

sothat for k > 1, a
(k)

(x) is the remainder on

a(k-1)
:

(x). When ah)( (x) is finally 'identically

and
.

a
(h-1)

(x) is the greatest common divisor of

dividing a
(k-2)

(x) by

zero, we stop the procesS
(0)
a (x) and a(1)(x).

The justification is the same as that for integeli given in Section 3-2 of

the student text. We have taken the liberty of multiplying our polynemials by

constants at various stages in order to avoiefractiOns. This, as mentioned

in the statement of the-problem, will not alter our final answer.

We see that new polynomials in the above list will be generated by apply-

ing BIMUCtMOD to the last two members Of the nit already computed. BEMUCEMOD ,L

will call the last two members of the list a(x) and b(x), and will replace

a(x) by the remainder. Before repeating the process we must then switch the

roles of a(x) and b(x).

This switching is acdomplished in the main flow chart of problem 4 by

the auxiliary switching variable SW seen in boxes 6, 12 and 13. This vari-

able alternates between 0 and 1 on each execution of RELUCEROD and thus

sends us alternately through boxes hand 8. In these boxes we see the alter-i.

nation,of the roles of a(x) and b(x).

Box4.9, 10 and 11 have the purpose Of determining whether we are through.

T is the degree of the remainder% If T > 0, then we are, not .througlrIf

T = 0, then the remainder is a non-zero"constant and we ILow that the greatest

common divisor in simplest form will be 1, .so we print out "1) (box 14).

If T < 0 (that is, T = -1), then the remainder is zeito and the last non-zero

polynomial in our list is printed out as the greatest common dniapr (boxes

15 17)

The following flow chart is a variant of the one just seen. The reduction

from 17 boxes to 10 is achieved by the use of'double ubscripts. The two

polynomials are

and

n
0

a
0,no

x + a.'
0,210-

n -1
0

+ + a X01 00

nn
n1-1a x +aln

-1
x + ... +a x+ a

J,0' 1
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The switching variable SW know becomes i so that the switching is accom-___

S
plished by alternating the values of the first subscript thus changing the

roles of the two-polynomi ls. Now boxes 2 through 5 of 4(a) are compressed

into boxes 3 and 4 of 4(b). Boxes 7 and 8 of 4(a) are compressed into box 6

of 4(10. Boxes 9 through 11 of 4(a) are compressed into' box 7 of 4(b). Boxes '

12 and 13 of 4(a) are compressed into 8 of 4(b). _Boxes 15 through 17 of 4(a)

are =pressed into box 10 of 4(b). Boxes 6 and 14 of 4(a) become, respectively,.

boxes 5 and 9 of 4(b).

001
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*1. (b)

1

i 4.- 0

i < 1
I 4.- i + 1

IT

3

a j = 0(1)n.pp

EXECUTE

DEGREE(ni, (ai j = 0(1)ni))

EXECUTE

SEMPLIFY(ni, tqi,j, j =.0(1)ni)

0

EXECUTE
REDUCEMOD((ni, i = 0(1)1),

i j
j = 0(1)ni),

( al_i j = 0(1)n1_i))

/ 7
> 0 valueeTfif n

i

-

= 0

9

"19'

< o

10

.1

ri

70,

0(1)fl
1-i

)



Further workcould be done along the lines of this problem set: The

flow chart of problem 4 could be made, into a procedure which we might call

GRCOMDIV (to distinguish it from GCD). Now we could, given a polynomial a(x')

with integer coefficients, find a polynomial SIMP a(x) having the same roots

as a(x) but having no multiple rooti, This polynomial is given by

a
*SIMP a(x) -= a(x)/b(x)

where

b(x) = GRCOMDIV(a(x), ar(x)),

at(x)* being the derivative,of a(x).
4$

Next, one could take up Sture's Method for isolating the real roots of

polynomials. (See, for example, Uspenskx, Theory of Equations, McGraw-Hill,

New York, 1948, Chaptei VII.)

For illustrative purposes,we show in the following table the repeated

trace thi''ough REDUCEMOD for the solutioh of the GOD of

a(x) = 3x5. + ax4 + 2x3 - x2 + 5x + 2

and
4.

6x3 3x2b(x) = 2x + ox + 3x + 3x + 1 .

The GRCOMDIV(a(x), b(x)5 turns' out to be x
2
+ 3x + 1.

As can be seen on the trace, three successive calls must be made on

REDIUGUAOD before a remainder is found which is identically zero (i.e., n < 0).
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Box almbe'r nmXCD
Fii.st entry to REMUCEMOD, (Initial values) 5 4.

Second entry to REMUCEMOD

a5 a4 a3 al.//)ao

2 -

b
4

Obi"

e b

b1

;
ro ,

FalseFalse

1

2 '2 3

J v
<,

3

P

i '
0

-...1,.

_.

T

3
4

5 .

2

-5
e

.4

.J

T

3
4

5

3 ,

-11
..

°
T

3
4

4

3

6
_

.

.0
6

F

8

t

-:-'

6
.

-/ 1-5 -11 6 3 3 11

4 '3 12 6 3 3 11 -5 -11 7 4
(Eit) T

2 1 -5 2 ,

,

.
F

3
4'
5

1

-,.6.

T

3
4

5 -29

,

.

T

3
4

5 ....

-23

c

5
'

,

T

d
4

5

4

'

.

;5
"

..

-F

3
- - 5

.

8
- 9
1

-9 -29 -23 -5 1-5 .11 7 4]



. .
B.ox Number nrsXCDi a'

balance brought forward

Third4iantry to RELUCEMOD

a

r

3 3 1 -5, 2

a4 a2 ai

-8 -29 -23

True;a
0 b

4
b3 b2 b

1
b0

-5 - -11 4 .
2
3

5

1 -5 1:8 . .

1

-,-

57
.

.
-. T

a .
3 ,,
4

P
.

+ 2
..

-

,171
. T4

3
4

3 ,, .

, 57
T

3 i
7 2

11-5

14 .
.

A 1 4
t

8 2
9
1

X
3'f--2

157 17L 57 -5 -11 7 4
. 1 3 1 -t-r

(id.t) T
L5 -11 7 1J 11 3 1

1
2 4 ,

3
4 -
5 .

1 , I

4
T

3
4
5

' g

12
I T

3
4

4,
A

-

-..) 3 '
i 4

F
..,-

3
7
8

1

'p

2

F

4 12 4

,

3

5

1 .

.0 0 .

4
2,-

o

.
,

/.
.

°

.

3

, ' AB1.
TO 01

9
1 a_c_D-. 11 3 11 (E3dt ) 1,'. L
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Supplementary exercises

(We reprint here set of exercises which may be of interest to your'

students. Thbse originally appeared in the student te3ct of the preliminary

edition. The solution set is given at the end of the reprint.)

Students-often enjoy number- conversion problems. Problems 1, 3, 4 and 5

are reasonable for class assignment. Problems 2 and 6 are tricky and really

better suited fOr challenging projects than:for daily assignments.

(Reprint begins here)

The decimal syStem has 10 as a base; i.e., there are ten unique digits

(symbols), 0, 1,2, 3; 4, 5, 6, 7,'8, With these ten digits we can write a

number as large or as small as we--`41-el by allowing the position of the digit to

represent a'spedific power of the base. As you know, the decimal numeral'

4047.4P
/

mealls .

II
-. '

4047.40 = (4 x 103) + (0 x 102) + (4 x 101) + (7,x Id)) + (4 x 10-1).
,.

note the use of the 'Subscript TEN to indicate the base. ..

When members are expressed in terms of bases other than ten we can easily

find their decimn1 repriSentations.- For example, the binary (base two with

symbols 0, 1) ,numeral. 110170 may be expAssed

,g1,;23)'4., (l x 22) + (0 x 21)_ + 01 x 20)

Or l3 -The octal (base eight syMbold: 0, 1, 2, 3, 4, 5, 6, 7) numeral
."263E161i;[ becomes :

(2 x 82) + (6 x 81) + (3 x80)

or
.

179TEN'
For the hexadecimal system (base sixteen, symbols 0, 1,2, 3, 4,

5, 6, 7, 8, 9,- To.,-V7W, X, Yr Z) 15WEIXTEEN becomes
A ,

I- (1 x 162) + (5 x 16
1
) 1 + (12 x 1 6 0 ) = 348.

.f

k

a
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Now let's look at a referedce flow chart for procedure octaldec(n,A,dec)

for the conversion of octal numerals into decimal, as given below. We let A

be d'vector of n places having as its entries the digits of a positive

numeral arranged in the order in which they appear in the numeral; e.g., for

n (-3, Al (-6, A (-2, A
3

(-4. The variable dec returns the decimal

value.

OCTALDEC6,A,dec)

Flow chart for conversion of an
octal numeral into decimal

Wasn't,it simple? Now it's yOur'turn.

, A
a

Adopting the flow chart of octalaec, r-prepare a reference flow chart for

Procedure intodec(n,A,B,dec) which converts'a positive numeral, base b,

into decil;IP1 Base b .will be restricted to ,b < 10.

1*
2. For th ingenious student we propose the problem of converting from

hexadecimal to decimal. In this case,the entries of,vector will be

alphanumeric, rather'than numerical as before; Thus, we must egin by

identifying each symbol.

, (a) Prepare a reference f4 Chart for a procedure identify(k,A,VALUE)

which acceptti the vector A and the index k of the element to be
2

identified. It uses as local variables the alphanumeric elements of

the vector COMPARE.

r
Vector COMPARE

Subscript, 1 2 1:'3 4 .5 6 7 9 T, 14 12, 130 14 15 16

Element u0u olit ur tv, u81.019.7 uUu urrnws, pv,

(e)

'
1751 8 0

4
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The procedure returns VALUE, the value of the hexadecimal digit

represented in Ai.

(b), Now prepare the reference flow chart for a procedure hexdecdec(n,A)

which converts hexadecimal number& into decimal numbers.

Now for the rewse process. -To convert a decimal integer d to another

base b, we divide d by b, obtaining a quotient q and a remainder which

we store in the remainder vector r as r1. We replace od by q and divide

the new, d by b.' Again q becomes d; the remainder is stored as r2. The

process is repeated until c is 0. The digits of the answer are contained

in vector r in reverse order, low-order to high-order.

/

The method may be illustrated in the conversion of .204 into binary:
TEN

=,,2024,
J =102 - r

1
= 0

,102,
n = ,51

2
r2 =0

,51,
j 25g = L 2 =

....

g . ( q] = 12

q =

q =

q =

q =

(341

(-61 ---.
2

(21

(1
2

=

(

=

=

6

3

1

0
.

I

.
.

Thus; = 11001100Tw0.

r
0

=
3

r4 = 1

.

,r5 = 0

r6 ID.

r7 = 1

r8 = i ,-; -

.204Tal

..

,3. (a) Use the method to convert 1284
TEN

into octal

)
(b) Convert 6345 into hexadecimal.

TEN

Now that you've practiced the method, we present 2t4- referenceflOw charts

for procedu dadbin(d,m,R) which cdnverts the positive deciffial numeNl_ d'

into binary 4e result is stored in the first A digits of .rector R with

the digits

'era]." (i.e.,

4

ranged in reverse order to that in which they appear in the num-
',r

2527) C' *would appear a$

176
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V.

-Your turn again.

decbin(d,m,R)

FlOw c for conversion of a
decimal era,1:into binary

T5

1+. Write a reference flow chart for the procedure outdec(d,b,m,R) whicht
converts he positive decimal numeral d to base b. Again the result

is sled in the first m digits of vector' R with the digits arranged

in reve order. , \

5.4 Now is time to put the two parts together. Draw a flow chart which

inputs the quantities' bl, b2, n, -A where the digits of a positive

numeral in base bl are contained in the first 40,, elements of vector A

the base to which the numeral/is tolbein - no order and where b2 iis

converted. The output will beAlle numeral in base b2. We make the

restriction that bl < 10 and b2 < 10:

6. Finally, for the really. crafty student we suggest a probleth using Roman I

numerals as input. Prepare a reference flow chart for a procedure

Rmum(h,A,NUM) which converts any Roman numeral, less than MMM rep-

resented as a vector- A of n elements into air Arabic numeral BUM.

the vector A ,contains a4 laments each digit of the Roman numeral ..
. . .

,

arranged
a
high-order,to low-order. As local variables use the elements

,of vectors ROMAN and VALUE. The comparison vector ROMAN contains the-
/

seven elements listed below. Each element of the vector VALUE cont ns

' the value of the correspondirig element in ROMAN as given ow. ,
k.,

\ .e

( . -.:

.,.

., ..1

4



I.

1.

1.

moolgo-'

4

Vectpx ROMAN I V X `1, C D M

Vector TE 1 5 10 50 100 500 1000

(b) Draw the flow chart for a program which will input two,RomAp numerals

less than MMM and Output an echo check and their sum in Arab

1c

1

numerals. Go back to phe input step. j

utions for preceding exercises

intodec(n,A,b,dec)

2

1 4 1

i < n
i 4:- i + 1

1

4 3

decE- dec +Ai xb (n

For teat data we suggest that the followingbe transformed to bgse ten:

f

Test Dais

10010101

436EIGHT

122102

1101000110

437°1EIGHT

42153SIX

4)\

Answer

.

:37TEN

i5z
TEN

.47 OKN

419Tml

17601 -

5685T

I

,..

...

.1
r
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COMPARE].

COMPARE 4- "1"2
COMPARE,

dOMPARE4

4-
4_

"2"
113,1

COMPARE +-` "4"
COMPARE' 1,51,

COMP 116,,

COMPARE 8 "7"
COMPARE- "8"
COMP 0
Cad's

+-

4-
1194

"u"
comp .- "V"
comPARE13 "w"

comPAREili.
"x"caviPARE15 "Y"

C°MPARE16 "Z"
2

j 4-- 1 < 16j + 1 _

1-6 a:WARE y
f T

J - 11 .

Suggested Test Data
4

3XVSIXTEEN

2Z4U
SIMEEZT

(-
4

hexadec dec(n,A, de

<

dec
2 A

ic-1
i+- i-+1

in
EXECUTE

IDENTIFY(i,A,VALUE)
4

dec +-dec + VALUE x16(n-i)I

Answer

987TEN

122'98

4.2.79 I.
..181
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3% (a)

4. '

4

5.

r 1284, ,
q = L-11-7.1 A.vy

3.60
q= (] = 20

6

q = (430-]6=-2

q= (;) = 0

rl 4

r
2

= 0

r3 = 4

r4 2

1284 = 2 404
EIGHT .77

(b) q
6345

- 396

396
q = (75c) = 24

24q= ITO

q = Cie1 = p

r1=9

2=12

=8

1.4=1

6345TEMP= 18W9SIXTEEN

cutdec(d,b,R,m)

I

,b1,b2,p,(AK,K=1(1)a)

EXECUTE

int4des.(n,A,b7,base 1

EXECUTE

odtdea(base 10,b2,R,a)

=;111(-1)1)

11.

4

1..

2.

3.

Suggested Test-Data Answer

4

13671:EmEa.

6429

.192112TEREE

into base TWO p

into base FIVE

inj
.
41EIGHT

10111101.11100

401204

467Ea
HT

iso
185

,

dal



6. (a)

4

t.

Rnum( n,A,NUM)

RbMAN
1 f- "I"

ROMAN +- "V"

ROMAN
3

+- "x"
Rom.AN

4
"L"

ROMAN
5

f- "c"

ROMAN
6 +- 4"D"

ROMAN
7

+- "m"

VALUE
1

+- 1 40#.

VALUE
2 +- 5

VALUE
3

+- 10

VALUE +- 50
VALUE

5
+- 1.00

VALUE
6 +- 500

VALUE
7
+- 1000

3
NUM (- 0

LAST +- 8

k 1
r 4

< n
F

(- 1

4- I. + 1

T
5

i < 7

FIT 6
A0s) = RomA.N(i))

T'

'T
LAST <

44*

4

"INCORRECT
CHARAOThli"

is

i 8." .
J1UM 4- NUM 2 X VALUE( LAST) + VALUE(i)

,,?j

itAST

k-
8i

18:6
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6. (b)

1

(Ak, k = L(1)n), m, (Bk, k = 1(1)

2

= 1(1) n), k = 1(1)m).

EXECUTE

Rnum(n,A NUM 1

EXECUTE

Rnum(m,B NUM 2)

SUM NUM 1 + NUM 2

""sum =11

SUM

6

-Suggested, Test Data Answer
- ir

1. MCDXIV, MMIX SUM = 3423

2. LX, DXLV SUM = 6o5

j. Mb1CVIII 6r,rt SUM = 2569

(

182

I 8 7
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%. Answer to Exercises 5-5

1. sume equatijOns of the form

al x +b1 x y = cl

a2 x x + b2 x y = c2

Let.the value of EXIT be zero if lines intersect,and one if the lines

are parallel.

ROOTS2(al,bl,cl,

a2,b2,c2,

xl,x2,L)

denomi- al X b2 - a2 X bl

. 5'

3

xl +--(c1 x-ba c2 X b1)/denom

(al X c2 - a2 x cl)/denord

.l4
RETURN

Suggest -d Proble

3x1 x2 -1
(b) 6.147x1 - 3.28 2.481

2

2x
1

5x
2
= 3 3.2x1 + 4%.91x2 = -1 .233

Answers:

1
(a) = 0.0526

11
x
2

= =

f

0.201

x2 =

11

Asti

4
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2 . 4....n;

ROUISA( a, b ,e,x.1., N)
00.

O

I

184
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1

a, b, c

2

a, b, c

3

EXECUTE

ROOTSA(a,b, c,x1,x2,box5,box6,box8)

7

"TWO SOLUTIONS

X71 =n, 41,
try =", x2

1

t 5

`NO INTERESTING

SOLUTION"

.6

"ONE SOLUTION

x =", X1

8

"SOLUTIONS ARE

COMPLEX"

2. (c) ROOTS( a,b, c,n,x1,x2

2

n -1

..

117

3

DISC 4 - 4aq

4

{DISC

0 I

5

DISC = .

I
4- 2

xl -b5f55
n

b
X1

2a

2a

-b -15M
n 3 2a

14

\
47RN I

185,,

SY

I

/-*
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"TWO SOLUTIONS

xl xr

o x2 =11
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3. (b)

v.

4. SUMF(F,A,B,C,D,X)

-
a

-1'11 5- T + C

CA

4

< B

T
5

D + F(T)

7

4

EXECUTE

f(zr,s,V,box12)

". .

13

*-,v+6xw

ii79' 2.
, ,

4,

s '12°

"V cannot be
computed'''

co



Answers..to Exercises 5-

1.

F

41.

contch(n,1,c,COUNT)

4

d.

2. Let the value of ERROR equal 0 foit'a correctly written expression,

1 for a negative counter value and: 2 for a nolliero counter value at

the end of the scan.

'parenchek(n,S,ERROR)

.

a

4

ERROli 4.- 1

1

4 188

. 193
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contst(n,g,k,O,COUNT)

1

COUNT (-0

m 1

2

=UTE .

chekst(n,T,m,k,Z,p)

1'

p 0

4

COUNT COUNT 1

map +. 1

. 18'9

n= length of text Shorthand.

T.= the string being examined.
(i.e., (si,i+1(1)n) itr

k = length of 41119.aring

C :'shorthend for the sub string
being searched for, i'.e.,
(di,i+1(1)10

COUNT = the count of occurrences
of C in S.

.0 4





. . t

"Chapter-T6

APPROXIMATIONS

O

This chapter is in a way a freak show or chamber'of horrors exhibiting

samples of may types of difficulties encountered whenalgorithms are actually

carried out in computer4.% 'These pathological examples are included not to

scare off the reader but rather to make him aware of their existence.' Numerftal

analysts (people who make a specialty of this area) often are abletoxsuggest

ways of avoiding the exhibited difficulties in any particular case.

The first section of thb,chapter concerns itself with representing numbers

in a computer while the second briefly reviews what we. mean by chopping and',

rounding to n &tits. Section 6-3 illustrfates arithmetic on a 3 -digit com:

j
puter. In Section 6-4 we gtud4 some of the consequences of the fact tha com-

puters have only finite -word length., While only a subset of the ratio num-:
41

bers is actually representable in any computer, we often act as though all real

numbers were represented. It is interesting and instructive 'to,realize that

most of the time what we represent in the computer is only an approximation to

the number we have in our mind.

Section 6-5 deals with the consequence that computer arithmetic is not

associative; the order of operation's may affect the result. SectionS 6-6 and

6.7 illustrate difficulties that could arise in solving familiar problems by

computers. The last section, 6-8, discusses using a computer to compute the

value of a function by"methods Which themselves are only approximations. The

examp1e6 are the iterative Newton algorithm for tlf square root,,eAd compute-

tion of in x by slimming terms of a series.

*1
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c.

Answers to Exercises 6-1 , .
.

1. "(A) no (f) yes, 3
9 4

(b) yes, 34.2 (g) yes, 250,827.36

(c) .yes, 3426 ' (h) yes, 0

(d) no * (i) no
e

(e) yes, .078125 ,(j) no °.

Answers to Exercises 6-2

1. 4970E)

.00723

3. e. 42.3

.4.:JT-777o

.7,

Answers Ito Exeicises 6-3

1. (a) 467

,2. (a) 8010

3. (a) .485 x 10-3.

6t) 6.87

. (a), 9.71

\
1

\ \ (
_.

1 5. 497oo

6. .00724

7. 4'2.4

8. ,778o

\ (f),
46.o

(b) 24.2 (c) .200

6.38 ( *005011'

(b) , _*( a) .7.1.0

(b)'22.7 r'*1 (c) 4.76

-

' e e .

I

,

-

I

9 .
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Answers to Exercises 6J

2

0
O

O

1A

.0111110

.0001100
1.

.000110011
.000110011

TW O

.001100110

.00011001
.1001010
.000110 -

.01001100

.0001100
.161011
.000110

.0110010

.0001100
.110601

-.000110

.011,1110 .110111
.000110

'..1111'01
A

.0160101
3

2- 10101 11.0000000
TO. 10 10

10000
1010

11000

7

.10

,

.101100
1010 1 111.000000

101 0 .

10 000
1 010

1100
1010

1000 -

0
0

b .

7

a

3. 'Since multiplying by two ih tinQ.ry ,jut moves. the whole sting of digits

,? one place to the left, we

V .

10,

6 .

= .00110011 igi..

:-. ;100101
-i. .

. -. . -

.0

7.5
talooll g' obtainedby multiplying the binary version

8
. t. -.Of...1%- by 2.

Id

, -

:110011
.

.

0

9 . c

I

7

a,
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Ans*ders to Exercis4.6-8 / '
.--

f

1. 7 If

1/22,

a .'0,

1/23

1. 1
-7 - 7
2

the' first

, etc.

1 -`
= 7 ,

2

.

value of h
2

1

'

- and successive values will ba
$

1
The successive differenbes p lh-gl will be

0 '

.

7 - ,-.- ._ -7, .e c. The Process will terminate when
1

\

2 r :., 2'2

1,

z

L 1 1
-

2k
<

2

1 4 .k'
This is eguiyalent to 10 < 2

.
.

4pr k >
.' '

-

2k,
.2

.

]0 log 2

2. 4. If a'< 0( we know theoretically that there will be trouble. Suppose
fr

a = -2; we will fill in a little table.

4

.-' g- :' 2(g,4- Iii) I h - gl,

1,

.

-2 ,

1

a'' .
1

2

1

7 S 1.75' : 1.25

1.25 ..-1.60 -.175 : 1.42

''rom the last . colu.mn. it is apparent that, th - gl' is increasing. The

successive approximations are getting worse rather than bettr.
i,

4

'SA

3 An initial guess related to the size pf a *mild get the algorithm off

to a faster start. 1,7puld be such a guess:, However, in this case we

must be sure a is -not zero since-we divide* by it in box 2. Since this

algorithm is to be used as a reference flow chart, the ability to handle

any value of a- is more important than saving one iyration of the
+ 1

algorithm. The value of
a

as an initial guess meets both condit4ong
2.

hit is more complicated.,

ig 4
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1
( X,ACCUR'

2

.< X
--2

-Pv

3

X -X + x SIGN(X)

1.

tO

1

SIN( X) 4- X_

TEM 4-- X

K X2

4

1 4-
TRM I >ACCUR

TR x TRM
2ix(21+1)

SIN(X) TRM

7

In the case that tha input va:$u4 of X is 'large, many passe through

the loop in Boxes 2 and 3 may be required., To avoj.d, 6 we could replace

Boxes 2 and 3' by the machaliism:

.44

4

t

from Box-1.

a

T 47. ( (X + nien]

K T - -2{T/2].

X 42(-1)1((X - T x

to Box 4

19r2 0 0

1

(/.
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Chapter T7

SOME MATHEMPTICAL APPLICATIONS .

) '

Overview'

This chalher.is devoted toiintroducing the use of computer techniqueb-in

connection with three problems of the greatest mathematical importance. These

problems afford the student Ills first glimpse of the way computers are.really-

used in applied mathematics.

These problems'are: roots of equations seen in Section 7-1; area under

'a curve in Sections 7-2 and 7-1; and'solutions of systems of 4near,equations
. .

in Section 7-4. Thus we meet' applicationjpf computers in the areas of

theory of equations, integral calculus and linear algebra. The,main mathe-

matical, areas of computer applichtion which hhve been omitted are statistics

and ordinary and partial differential equations. The latter topics are

well beyond the scope of this book.
.

For further reading we suggest:

(1) Edward Stiefel, An Introduction to Numerical Mathematics,

Academio:Prel .

, .

(2) L. Pox, An Introduction to Numerical Linear Algebra, Oxford Press.

r

O

197' -`
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4.

4r,

.

T7-1 Root of an ,Equation by Bisectiop

The successive bisection algorithm presented in this section

means the'only method for finding roots of equations. Newton's method, for
.

example, converges to.theroot much more rapidly._ The biection.algOrithm,

in essexce,Jicics up one 'pew binary digit of the root on each passage through

the lbop. Newton's method.by contrast vfll double the number of correct

digits ( binary or decimal) on each passage through the loop.:

We have touchdd on Newton'smethod in Section-5-1 as applied.to square

roots because in this special ease we were able tot present Without.the use

of calculus. A general treatment, of Newton's methocliwould require the use of

,differential calculus which We assume the student will not .i.ave had. In case

your students have had some differential calculus we present later in this

section a brief exposition of a Newton's method algorithm which you could

is by no

present to your students.,

The mathematical basis of the bisection algorithm of this section tt

extremely simple, .viz., when'a continuous,fuhction changes sign in an interval .

then it has a root in the interval. The number of roots in the interval must,
either be odcr(counting multiplicities) or infinite. In the case that the

.

number of roots 'odd and greater.t.hanpne it is 'difficult and of little_

interest to attempt to detarmiii in advance which root 'the,algorithm will

converge to. Since the interval (X1oX21 will at all stages contain an odd

number of roots, it is relatively easy to see that the method mist converge

to the first, third,fifth, or seventh, etc., root.

If it is not known

given interval, but yet

to a root or to a point

in advance that the function is continuous in the

the method converges, then it must converge either

of discontinuity Sbf the function.

.111 all the preceding discussiony of.other things which our algorithm will

do, one should not lose eight of the fact that the algorithm is primarily '

intended fgr the case that there is just ,one root in the interval. One may

even say, ,for the case that it is known that there is just one root in the

interval. One way in which one might know this is by knciwingjthat the 6

'derivative of the given function does not ehange sign in the given interval.

9

...'
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Newtdn's Method

T7

This method was briefly discussed. in this Teacher's Commentary in

Section 5-1. Here we wish to discuss a slightly different way in order

to treat the subject of error. This disCission may be found in many calculus

books. We will give a condehsed description here.
. -

Before embarking on the study of. the Newton's method algorithm it would

be well to be aware of sobie of its limitations as compared with the successive

bisection algorith. Newton's method ceverges to the root fantastically

Taster than the lAsection method. if tha available binaiv word length of the

machine is w then the number of iterations of the bisection algorithm loop

'required for maximum accuracy is - w

of ;iterations is - log2t4 Tf w wer
.

would.be enormously superior. Since w

than 32, the numbers of iterations are on the order of 32; and 5 respec-

tively, so that the saving is not so.very great unlesalgorithm is to be.
. ,

used on a large number'of problems, ,or unless a great degree of multiple

precision is available, Or unless the computation of the functional values

is very time consuming.
.

bile fdr Newton's method the number

very large then Newton's method

is in practice usually no better

rilarthermore, 'the.use Of Newton's method requires guarantied Nowledge of

the behavior of the first two derivatives which,may not b
4
e available'in

pfactice. The method is thus only suitable tkuntabulated functionNwhose

_first two derivatives are computable and have certain Vnice° properties. The

bisectihn technique imposes no such restrictions.

Still, the Newton's- method algorithm has considerable instructive value

especially as reg4rds the preliminary use of the,biseCtion technique to obtain

reliable bounds on the error. Furthermore, a variant on this,..method is ,

indispensible in the application of numerical method to differentiaj.. equations.

The analysis which follows should contribute to the understanding of this,.

variant.

- Let f be a function having a root at r ,and let x0 be dnUrriLei

different from r. Suppose 'that VW and _f"(x) do not change sign or

assume the value 0 between r and x0. Further assume that the_constant
.

sign of fl(x) f"(x) .4.s the same between ,x0 and r as the sign of
.

x (-.)- - r., Then the line tangent to the -graph of f at the point -(x
0'

f(x
0

)

intersects the 2-axis at a point xi lying between x
0

and r. The:four

possible cases'in which these conditions are met are illustratelbelow. '

o



4.
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'(a) f'(x), f"($"

all pCisitie.

y

(b) xo r positive;

f (X), f"(x).. negative..

(c) xo, ft(x) negative;

f",(x) positive.:k

(d) xo - r, f"(x) negative;

f'(x) positive.

-2

Although the method to be derived works in all.these cases, we

assume for simplicity in the,rollowintediscussion that case (a) holds, i.e.,

xo -'r, f'(x), f (x) all positive. - ,
. )

,...

The triangle in Figurr)(aY above yields'the ratio
P. .

\ .'(1)
f(x0)

..,

'

,

- fl(X0)X0?- X1
t

so that A

f(xb)

.r
,xi = x

9 f'inco
ti

4,

200'
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[Since f"(x) > 0for r < x < xo, then f 'is convex in this interval so

that-the tangent line liesbelowthe 'eu,rve and thus xi lies betweTn r ,and

x
0"

A bound for the error xl - r in, terms of the originarerrof xo -r, is

next; .derived.

Using.the La4 of the Mean.we have

(2)
,fcx0) - f(r)

=4?
x0

4 f"..(

.

.

for some s 'between x
0

and r. Recall that f(r) = 0 and rewrite (1) and

(2) in the form
o .

1
fl(x0)

xo xi f(x0)

1 ft(g)

r
f(x0)

;eking the difference and again applying the law of the mean, -ffils'time to

fqx ) - ft(Of we'obtain
0

(3)
1

f1(x 0)1 fi.(0 4f"(T)(x
0

- r f(x
0

) f(x0)

where T lies between x0 ar}d, hence between x0 and r.

Getting the left-hand side at (3) over a common denominator and replacing

f(x0) on th'right Side 'by (to xl)fi(x0) from (1) we obtain

so that

fence,

.
Xi j

/ TT(Tpo

xl)(x0 r)
,

TI(x0)(5,-,x1)

r
f'(x0)

f"(T)(x0 - °(x0
r)

M
- rj 5,17(x0 -r)2.

where, M = maxlf"(x)1. and N-= minift(x)1.-0
r < < x r < x < x

0 0

3
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Iterating the

In general,

7A, disadvantage of

of r in advance

of r from x0,

es 0

MI
Now, ..ifoix - al -were known to be fairly small, say less than

the meff,rod is seen to coverage at a galloping rate.

process by letting xl play the role of
0

2

lx2

\t"
- ri

k
M 2

rl < (N)2k -1(x0 - r)
2
k

((x0 r»2%'- -

thin method would 'seem

However, if a is a

then

we obtain

to be that w3 need to know the value

number known to be on the other side

rl < Ix° T
2

/ r

'A good method of procedure might be

and a by the bisection method until we

"to the Newton method.

In addition to knowing that the first and second,derivativesare posit(ve,

we know 'that'Vle second derivative is monotone, then

to determine
:(14

have Nix()

successive

al <
1

1 _

f '
then

'1"<

laes of x0

and then switch

while

< max(f"(x0 )
'

f"(a,))

,

N > ft(a)

. A flow chart for the entire algorithm is given below. We recall all the a.

conditions: [a,b] is an interval in which a It of f(x) = 0 is known to
N

lie; fl(x) and f"(x) are known to be positive in [a b] with_ cf"(x) monotorie-_

Any of the four cases dpscribed earlier-dan-be-redudedtO the case considered

hereby suitably} replacing f(x) by -,-f(x) . or by f(-x) or by -f(-x).]

For'convenience we denote fl(x) by g(x) and f"(x) by .11(x).,

202
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1

a

*-2

c (a + b)/2

t .3

( values f(c4

1>
4'

b c

<0
65

a c

6

H(b) > H(a)

M (-11(b),

4'. 8

(-ka)

N (-G(a)*

T M(b 4)/N

1

T < -
2

'XO

L (b - a)/T'

12

(-122

X0(X0 - f(X0)/G(X0)
,

ru, 4

04

13

T x L <

IT
14

XO

1.

Combined Bisection acid Newton's Method Flow Chart
:r1

T7

In this flow chart boxes 2 through 10 constitute ,a modified form of the

bisection technique Seen in the flow chart of Figure 7,75 of the .student text.
°:

This variant has as its purpose to beat down.the value of. (which is lust the

(x0 - a) of the preceding discussion). .The test in box3 of .this flow chart
N . .

is different from the test in box 3.of Figure 7r, of the student text because

we know that f is increasing. Boxes 11 though 13 comprise the Newton's

method. part of the algorithm. It is striking to tee' how simple this algorithm

is once we knO* we are in a suitable in %erval.
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Answers to Exercises 7-1 Set A'

The most difficult of these are 1(e) and 2(c).

1. (a)

(b)

bwe

Y = X3- 2x -

'4

fr.

-6

-4-

-2 .

4- 6.

root: near 2

Y = X4 -0-,3X2-2 X-4

-6

-4

6

roots: (a) between -1 and 0 ,

(b) between 1 and 2

204

1

0

A

1

a.



(c)

(d)

Y= 3X* -2X3
1-7x-.-4

.-
"G mjr

4

2

2 4

°

r

roots: (a) between -2 aid -L
(b) between 0 and 1

si

tft

*root:, between and -2

205

20 9
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(e)

-y - - 3x - 4 sin2x

I -
AAA

roots: (a) at. 0
(b) near 3

-LA

roots: , (a) at 0
E

(b) -near s± g, k = 3,5;7, .

06

2 0

G.

ti

of



e

'

(c)

Y X
r. =-4/1 X

Ry

root; betl:reel.':0 and 1

Ar

A.

u

roots: (a)

(b)
near
between. 2 and 3

(c) near 6

2O

2 11

S.

0

'1;
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Answers Co Exercises 7-1 Set B.
07

1. After 4 steps:th rrOot lies in
1

the interval (2.0625, 2,125),
7

Step x1

.Sign of

f(x1)

'

-

-- x2

Sign of
'f(x,),

xM.

',,gign of

f(xM)

2 - 3 + 25
1 -2.5 + 2.25

e
+

2 2 - "2.25 + 2.125, - +

' 2 - 2.125 + 2.0625 -

4 2.0625 - 2.125 . :2:094

-3

2.4 After 3 steps, the. root is found to lie in the interval (-0.875,-0.75Y.

Step x
1

Sign of
f(x

1
)

.

.

x2
Sign of
,f(x2) ' xl,i

Sign 0
f(xm)

71 + 0 . -0.5. -

1 -1 + -0.5 - ' -0.75 -

2 "-1 + -0.75 - -0.875 +

'0:875 + '0.75 , - . -0.8125

3. After 4 steps, the root lies in the interval (4..35, 4.5).

Step x
1

Sign,.of

f(4x1) . x2

Sign of
f(x

2
) xM

Sign of
f(k )

,

3 + 5 - ' 4

'1 4 :+ 5'_ - 4.5 . 1

g 4 4 4.5 t - 4.25 +

3 4.25 + 4.5 - , 4.375 +

4 4.375 + 4:5 - 4:4375

208
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Answers to Exercises 7-1 Set C

1. For E = 0.1 the rootcis 1.34.

.a

= x - x - 1 = 0

T7

Step x1

Sign of
f(x1) ) x'

Sign of
f(x

2
) x

m

Sign 6f_

.f(x
m

) Ix
1
-x

2
1

,Q + 1 2 i

1 1 - 2 + 1.5 + 1

k 1 1 - 1.5 + 1.25 - . 0.5

3 1.25 - 1.5 + 1.375 + 0.25

4 1.25 0 - 1.375 + 1.5125 - 0.125

5 1.3125 - 1.375 + 1.34375 + 0.0625,

2. For E = 0.15, *the root is 0.606.

3.

=

Step x
1

Sign of
'', f(x

1
) x

2

Sign of
f(x2) . xm.

,

Sign of
f(xm)

.

0.1 1 + 0.55 - 0.9.

1 0.55 - 1 + 0.775 , + 0.45

2 0.55 - 0.775 + 0,6625 + 6.225

3 6.55 - 0.6625 + 0.60625 + 0.1125

For E 0.4, the root is 0;875.

J. tvof."

'"

Step
.!.. ...,

.
I

S4gri o f:

f(xl) x
2

Sign of
f(x

2
)

.

i

xill..._)/

Sign of

f(xm)

i

'xi-x21
r

0 ' +N.A . 2 - -

v

2

+
.

1_ 0.5 + . 1 . -
2 0.5 + . 1 - ,,o.75 , + 0.5

13 0.75 1 0.875 + 0.25 .

4. The root is 2.

5.

"Method inapplicable" would be printed.

f(x) = x3 - 3x - = 0
,,

f (x) = x3 - 13x - 10 = 0

209
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Answers to Exercises 7-1 Set D
.

2
1,. Let -F(x),= sin x - -5 x

G(x) = tan x - 1Cm

EXECUTE

ZERO(F,B0X4,0,2,.0001,A)

4 \- '..

"Method is ,

inapplicable
for F:(X)

or G(X)."

G(x)

2
41%. 44'*"'1

ECUTE
t

ZERO(G,BOX4,0,,.00V....ei3)

a'

3

"BOOT OF F(X) >4.4

!t-

IS", A,

"ROOT OF G(X)
IS",,

0

.

Comment: BOX 4 should never be executed--but "just in case", we make

provisibn for printing a message. In computer work clerical errors like key

Lyech errors, or a l"bug" in the zero procedure, could cait the computer to

4take the alternate exit. It ithappens, we want torint'a message so we know,

it's happened. We take the same approach in giving similar print boxes in the
.

%Olutions toi the other exercises ih this set.',
4 '

-,,

'
0,

fe (.., 21,,, '

k

/
g 2,

(

1-



f

q-

.:"'")

EXECUTE. "

ZERO(H,B0X6,0,1,.0001-,R)

sir

6

"Method is

inapplicable"

2

- .05

o- 1

i+1
3..< 11

IT
4

COFR G(R)
11,0FR H(R).

5

460FR,HOFR

+ .01

3. The st

.

T7

J

nt should be able to.see that the root lies in the interval k10'
\

EXECUTE
1

ZERO(F,BOX3,7), 1, .00001,R)

3

. -.

e

`mob

1 2

'ROOT IS", -R I I

211'

'21,5'
Ja.
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4, Equation.fOr the orbit is
2

x2, y = 1.

Note that in the first 'quadrant, y 14:7

(a) ,Intersections, with the Ilypeitola

obtained by solving:

, 14:77 . --.3-

4 ';

Het r(x) =x .X.
x2

- =0

ar interval 0 < x 5

i

1
b) interval f- < x < 1

. .

(b) Intersection with the'powerscurves
. .

.5

n
y = x ,

in the first quadrant IS,

expressed as

1 - x = x
n

1 1xy = T 0 < x < -f. are

,2,3,4,5

Let Gl(x) = --X2 (solution

G2(x) = -

'T f Ica

G5(x) = .14777 - x5

.t

1

o

.c", --/4

21.2

2G

in this easels

.1
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1The revired/flow charts:

F(X)

T7

0500 A

EXECUTE

ZERO(F,BOXSpD,1, .0001;F2)

EXECUTE. ,

zERo(G2,Box8IT, 1, .0001,RG2)

EXECUTE
ZERO(G3,i0X8,RG2,1,.0004RG3)

EXECUTE , t

ZERO(G4,BOX8,11G3,1,.0001,.RG4)

6
EXECUTE

ZERO(G5;BOX8,RG4,1,.0001,RG5)

7 7

F1,F2,RG2,RG3,

RG4,RG5

8

Comment: We do not bother calling on the zero procedure for computing the

,root -of Gl(x) since the solution is obviously &/2. Notice th-at, we can u'A

the root of Gl(x) 1p/the lower limit ror the beginning bisect interval in

computing.the root o G2(x). In generar,' the root of Gi(x). 'becomes the lower

limit of the interval searoh for therpot of G(i +l)(x).

213
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T7

5 d,y
=

4
ax

7x
r- 6x - 4 =A0 = YPIIIME(*X).

. Inspection shOws a root

YPRIME(X) lies° in ttie

interval (0,2) .

. EXECUTE .

ZERO eYPRIME,i60X2, 0, 2, ANS

6. w = 15. feet

R.

o

"METHOD IS-

'INATTLICABLE"

,

Of -.-

3

YPR3ME (x

7 F ( X) :

.

214
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T7

T7-2 Area Under Yve: An Example: y 2 l/x between x = 1 and x = 2

This section constitutes the studentts introduction to the subject of

integration, although we hye deliberately avoided the use of that word. Such

a projectiori in-CO the future would best (we feel) be casually passed of by

the tea r.

TheWe are compelling reasons for believing that integratioCis best intro-

duced lia computation. In most textbook approaches to integration very little

timegiS devoted to computing integrals from the definition since most examples
,

are too difficult for hand computation. Instead, the texts head with all

possible dispatch for the Fundamental Theorem of Calculus. The effect on the

student is to leave him thinking of the integral only as the anti- derivative --

an unfortunate viewpoint for most applications. With computational'techniques

avaiIble, the student can program, or at least flow chart, a wide variety of

integrals before meeting with the Fundamental' Theorem of Calculus.

Furthermore, the computational method is more closely related to real life

where anti-derivatives can hardly evebe found. It is a sort of a miracle
7 that for certain elementary functions the integral can be calculated explicitly.

This miracle is of fundamental importance in mathematics. But, it should not

bar as from approximating integrals when no miracle occurs.

The numerical integratioritechnique developed in this section is -the trap-

ezoidal rule. It produces an, approximation of the integral regardless qf

whether the function is everyWhere positive in the given interval. Of course;"

the interpretation of the ,integral in cases in which,the function is not every-
,

where positive, would be.very difficult and'distracting,for students at this

stage.

To be sure, there are methods of approximating the integral which,converge

much more rapidly to the integral than the trapezoid rule. The most famous of.
these is Simpsonts"Rule, obtained by approximating the,function by parabolas

rather than line segments. (See almost any Calculus text.) Theapproximagon

is given by

SI

a
f(x)dx 3(f(a7 + 4f(a jh) + 2f(a + 2h) + 4f(a + 3h)

+ 2f(a.+ 4h) 4-'4f(a + 5h) + + 2f(a + (2n-2)h)

4f(a + (2n-1)h) + f(b))
4

. b-a .

. .

. ' where h r-- . The algorithm is simply flowcharted, but its justification
t-

1.6 beyond e scope of this text. ' ,.-

4

215 .
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In the text there 'has not been included a discuasion of a bound on the

error in using the trapezoid rule. We will next discuss this subject lee.

Letting h =
h-a

we see that the bisection meihod gives the approximate
2n

value, Ak , .of the area over the kth subinterval as

P.
'A f(a- + (k-1)h) + f(.,a + kh)

k
4.

while the actual area, Tk, ,is,

lk. j a + (k-1)1
f(x)dx . ... ;./. ,

....)iA"
4,

For some and some ri in (a + (k-1)h, la + kh} X
...,.., y-

''.0

h

and

f(a + (k-1)h) + f (a + kb) fe(i)

2

+ '111 f(x)dx = hf(Tl)
+ (k-1)h

by the mean value theorem for integrals. Thus,

lik AO = Ifq) -.f(7))1h

" 'f(71)
.111

<!,

4 ,
'Sy the 'law of the mean

f(0.- f(n),_ ft(T)

7 , \
. ,

for some T between and Using the fact tnat T - Trr <. h we.? have

Ai; I < M.ih2

where M . = max fi(x). Multiplying by the number, of subintervals,
ba

a < x < b

vg get an upper bound for the difference in the total areas 44

II Al < - a)h

216
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nthIn the iteration of the bisection process, the length, h, of the sub-
Asa

1
intervals is 7,77ri so that the error will be less than

2
1+,

a)

2n

If we know a bound, M2, for the second derivative of f in the interval

E1,b , we can get the much better bound for the error

M
2
(b - a)h2 M

2
(b - a)

12
4n

For Simpson's rule the bound on the error is

M
2
(b - a)h4 M2(b - a)

180
180 16n

I

For a calculation of these bounds for the error see, for example, R. Courant,

Calculus I) Interscience.

Answers toExercises 7-2 Set A

or-

Ti = area o± trapezoid ACQP plus area of trapezoid CBRQ

t..x.17ff(q+ 4)] qx4f(i),+ f(2).],.

t0. + li) + (? +1)

1, 4- *lx a --6 + + 3 17= =

2. T area of trapezoid'ABRP =

= area of trapezoid4ACQP plus area of trapezoid

TO- T
1
= area of PQR

3 17 1
g

272 1
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,:Answers to Exercises 7-2 Set B

1.,T2 = area of trapezoid ADSP plus area of trapezoid DCQS plus
area of trapezoid CEVQ plus Area bf trapezoid EBRV.

4 17 Xilf(1) *)1+ 17Xilf*+ f(a)] +.W1X4f(1)+ f(17)] +171Xl(f(17)'+ f(2)1,
.2 2 2 -.. 2 2 2

lr 1r4 2 11.2
= + + EL-5- + + +

13

1[1 8 4 8 '1. 210
4. 3 + +

7
+

"1.]
=$X

1171
1680

17 1171 1190 1171
2. T

1
- T

2 = 1680,- 1680 1680

19
'2: .01131

1680

a

1r4. 1,
+,13i7 +

+ 336 + 280 + 240 + 105
21Q

-0

5/4 3 2 7/4
A D C E B

T1 = area of _trapezoid ACQP plus area of'trapezoid.CBRQ,
......,

2
,area of trapezoid ADSP plus area off trapezoid DCQS plus

area of trapezoid CEVQ plus, area of trapezoid EBRV
4

1
- T2 ='(area ACQP minup area ADSP minus area DCQS) plus

'. (area CBRQ minus area CEVQ minus area ARV)

= area triangle PSQ plus area triangle QTR

!*

218

292
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Answers to Exercises 7-2 Set.0
o

Flow chart to 7(b) should be saved; i.t wi;_l'be referred to in the language
text.

a

1.' Abscissa values are 1, 17/16,
25/16; 13/8, 27/16, 7/4,'29/16,

2. The number ,doubles.

The abscia values are

1

23

----- )9.

A

n -1 S

k -1
k 4-1c4 2

9/81-1916,,5/4,
15/8, 31/16,

3,

2.

4,

21/16, 11/8, 23/16, 3/2,

2 - n + ---- X s]k.< n-1 n-12,

2
s s + 6 +

2n3 2n

40

+ 7.11
2

r 8
n + 1

f(x-) =,3x2 + + 1

2.
= 3(1 + -1) .4. 2(1

2
2 22k k= 3(1 4-717,+ 7E )

2 2 .

-n) 4. 1
2

2 +1
e

8k 3k
6 + n

2 2

3k2
= 6 +

2-n

219
r)2 2 0
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5. The purpose of this .problem is to help the student to understand the flow

ti

chart of F sure 7-16 by asking leading questions.

'bolution:

(a) T =

(b) .Enter

(e) T1 3

(a) -2n.- 1

(e) k 9 )en the test fails.' At that time you, just calculated

f(1 + :TA and added-it to S.

= f(1 + + f(1 + /33) + f(1 ) + f(1 + ./73)

§ 2 11 13 2 15

)= (.3) + (7) + (7) + (-8-)
2

.596 14-9

-67

(0 + 121 +.169 + 225)

= 1023. You enter
10224

= 512 times and go on to

The 513th time 'you go on to box 6. So you enter 513 times,

2 2
.. ,

ice. Exit once to box 5, once to box 6.

7. You enter for k = 1, 3, 5, 7, and 9

(f) k <
I

box

in a

(g) To = 2.50

T1 = .36

/1 = 2 34'

T2 -

n = 2 when b 9 is entered.

6 (a) A= in-(f(1\) + 2 (1 + ) + 2f(1 + T21-.) +

or

A 1 (f(1) f(2)
n1

f(1-+
n 2

i=1

(b) 4

1

k i.- 1 4

k <n
k 4-k + 1

220

224

+ 2f(1 +
n-r

) + T(2)]



-'1(Orr(1) + f(9)1'. 11(f'(1) -tf(9)] = 4(1 + ) 40 '

9 9.

Vittr
-.ccr.p.-.I.tCe,),_TrpF+4(4)[f() + .2f(5) f.(9)] 2Cf(1) + f(9)1

2 136
= 2(1 + ) 3.022

(01.) 2-(2)(f(1) 2f(3) 2f(5) +121(7) + 1(9)]
T =2 2

2 2 2 +0 776
= 2.1+63

315

(e) T
3 2

1(1)ff(1) +.21(2).+ 21(3) + 21(4) + 2f(5)

1 , 2 1 2 1 1,1 1 + 2 1
+ .4- + + 1. r,+

5729 2.273
2520

(f) T1 = 1 + 81(5)]

T
2

=
1-(T

1 4.+ 41(3) 14-f(7)]2

21(6) + 21(7

+?f(8) f(9)

T
3 2

-LT
2

+ 2f(2) + 21(0 + 2f(6) +42f(8))

(g) T4 = 2(T3=1-1(2)+ 1(i) + f(i) + f(-29-) + f(14)+ f(4) + f(41-) + f(27)J.

T
8k,

= +
8 f(i +;I 2, n-1 2n k odd 2

1N, ,,k
2 n-1

2
n-.3

,k=2 2n3
k odd

(h)

4-4(1(1) + f(9)]
"PI II

s

k -
k <-k + 2 k < 2n, -

T

s + 1(1 + n73-

lr 1 ,
T -LT +

n
=

2 n-1 n-4

221

-)-

7,

4



0

4

(0 0 =
2
1*(2)tf(2) + ff(.4)] = (1'(2) + f(4)] (4 + 16) = 20

1 , 1,
T1 -=

2
-(1)Lfk2) + 21(3) + 10 0)] = -2 + 18 + 16) = 19

T2 = 24")(1(2) + 2f(2), +, + 21(2) + f(4)],

= i(14 + + 18 + * 16) = :142

(b) 1,
= + 21(3))

( c )

f

T2 = 2L T1 + f(i) + f(-72.)]

f(2) lf(11) lf,(13) li,(15)]
3 2 2 2 .2 2 7 2 "4"

2n
1

T = +
n 2 n=1

2

2n- k=
(1 +

k oad

1 1= -T + f(12 n-1 2n-1 k=
k odd

2k

2n

2n-1

sin

i

a f.

222
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T'( -3 The Area Under a Ourve The General Case'

Answers to Exercises,1-3

The most difficult problems are 7(a) and 7(b).

Probrem 1 wilXbe called for in the language text.

1.

2. I h N.- b -

k (-1

k (-. k + 1
k.< n

., IT

1,6 S + f(a +kh)

(_h(f(a)
2

+ f(to)

.

k (-1

k k + 2
k < 2n-

flow ch-a4 fof

F 41 A (-S x h

oN

n 11' (- 0 h**(-

F 1 '

+11 x Sx Tn-
n 2

--'+'f( a- + k-X- 1r)

n n +

Ti

3. We could add a tally to count the number of times the interval is cut in

half and stop the calculation when this loop has been enered a certain
t

number of times. Specifically, in box 3.we also include the statement:

N (-1. We add to box 11 the statement: N (-N + 1. Between bo3ces 10 and

11 we add a new decision box N < N MAX. The true branch will lead to

box 11 and the false to a new output box indicating an error stop.

''7 Y'.

223
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4, ,,,Flow chart,comparison.

6)

,

qn

)

'''h , K f(a + Kb)
.

S
IP

T
1 ,

, T
1

- T
0

,

2 .1

. 4.

'1. 9.0 9.0 19.000 10.0
_

4 t-. : i 6.25 ..6.25
...

3 ]1.25 18.50 ; 18.750
,

.0.2,

.8 ,.
1

1 5.062
.

5.062 , %

. ' 3 .562 , 12.624 , ,

-5 , -10.563 23.187
.

.

.

-:- 7 . 14.063. 37.25o 18,.687 0.063

fill h K 1(a + Kb) G T
_

T
1

- T
0

2
3f .,-,1 9.375 '.9.375 5o.o6

)

21.94,

4
1 T

3 1 '2.297 2.297 , ,
:

3 23.766 26.063
At-

, 44.58 5.48

8 4 1 0.709 0.709 , i

'3 5.080 5.789 / '

,

, ,
5 - 15.498 21.287

..

. 7 434.494 55.781 43.21 1.37 ?

16 ,;-17.

10
1 0.264 Q.264

. ,

-- 3 1%373 1.637
,

,

_ 5 3.519 _ .5.156 - _ _

' 7 , 7.019 12.175 .

.

_

)

, 9 12.188 24.363
,

'11 19.344. 1q..707

.
.

.

13 28.892 72.509

15 40.880 113.389 42.86 0.34

I

7"

1

224

.21.48

,
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.6. .&e easiest solution is:

ECEINTE

AREA(0,2,10 ,RESULT)

equals",.

RESULT

This combinatioeof programs e luates the aroma of that part of the

circle x2 + y2 4 lying in he first quadrant end, hence, yields It,.

00

,
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T7

7. From the pictures below

,
it is apparent that

z +2 32n2<
2,

F(2) = -

and
, 1

+
1 13

in14. >
. 5 + r' =12

'and F(4) 2;14 - 1
12

Thus,

.

'Hence, the root of F lies between 2 and 4. Thus, bur mair(floW

chart calling on the procedure zero be:

e s

r

EXECUTE
ZERO(F,B2D,,2,14.,eps;R)

4

"The value of

e is", R

,

3

"Some mysterious

error"

226 ,

230



Y.

T7 ,

The flow chart f,or ,F is given next. Note that throughout the flow chart

we have replaced a by 1, b by x, E by 10
6

awl. particularized f(x)

at all occurrences to be 1/x. ,Otherwise, boxes 1 through 8 of Figure 7-20 '.-,
have been unchanged. This part of the flow Cheri has the purpose of computing

. ,enx Pipe lly, in VoX 9 we 'complete inx - 1.

.OLDAREA..- (1 + 1/X)/2

1 ;

m 4.- 1

ti

3

m x

h 4.- h/2

0

J

k 4-1

k+2
k < m

I

41,5 * 1 /(1+ k X h)

6

1
NUAREA 4- -f X OLDAREA + h X s

-INUAREA OLDAREA-I < 10-

F

IOLDART'A,
4- NUAREA I

227

231.

. _

Y 4 AREA - 1

r.

RETURN
Y.



T7

T7-4 Simultaneous Linear Equations: ,Developing a Systematic Method of Solutlon

In Sections 7-4 and 7-5.wg,study one of the basic problems of linear -

algebra, that ofsolving systema of 1.inear.equations. Unfortunately, it seems
.

impossible tb.gUe the student At this level an apprec iation of the wide yar-
.k.

iety of problems orpure and applied mathematics which rAlUce in the final

analysis to the solution. of systems of linear equations or to the closely rela-

ted problem of matrixinversion.

The Gauss algoiithm and its variants constitute the most efficient methodsI 4
of calculating, tie solution or at least a first approximation of the solution.

The familiar Cramerts Rule wherein the value& of the x ts are expressed as

ratios of determinants is much less efficient for computation and is primarily

ofN,theoretical interest.

The determinant of the matrix of the coefficients (a..) can be output as
. i

. a simple by-product of the improved Gaussian algorithm (Problem 2 of Exercises
. \

7-5, Set C). This determinant is the goduct of all the pivot elements

, k'= ,1

37 7

each taken after the row interchange made in the pivoting part of the algorithm.

This determinant can be computed by the addition of two flow chart boxes to the

algorithm. These changes are indicated in the Teacher's Cammentary in connec-

'.tion Friths that problem.
tr.

The above-mentioned problem,and Problem 3 of the same set.(on "equilibra-,

tion' ) will give the student a stiff workout. Experience indicate.; that by

this'time many students are thirsting for tough problems. These problems

should make an excellent subject of classroom discussion once the student hasahad a crack at them.

'Attempts are still being mike to reduce the inaccuracies due to round -off

error. Attempts in this direction are represented by partial pivoting and

eqUilibration. Another method for reducing round-off error is called "complete

pivoting". This method involveehe permuting of varialjes at'various%tages 4
of the process. Hence, we have the additional complication of keeping 'track,of

,

these permutations so as to make the inverse permutation at,the end of the cal-
: .

culation. For this reason, and because its effectiveness is not clear, we,

omitted discussion of this method.
. 4

228
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Answers to Exercises 7-4 Set A

1.

0
I7P

T7

t





Answer, to Exercise 7-4 Set B'
.s

Assume all coefficients are different From zero.

Divide all coefficients of
first equation Vy all

Solve second equation for x2

or, more formally:

A23: 4-- a21X Ail

2 4- a22- a21X 12
B2 4-- b

2
- a

21
X B1

T7

From second equation subtract
all X new first equation'

-4 "pack substitute" to get xl

a
11/

a
12,

b
1

a
21'

a22, b

4- B
2/ '42

B - A., X X
1 12 2

11
4--a

11
/a

11

1
12 4-a12/all

B
1

4-- b 1/a11

-4

The next seon of the text shows how to solve equations,more efficiently. A

231
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Answers to Exercises 7-5 Set*A ,

1. Upper bounds shown as 3 mur.:, be changed to n. These changes occur in

boxes 0, 1, 2, 5, 6 and 13. Also, the initial values for control indexes

in b(xes and 11 should be changed from 3 to n.

2 GAUSS(n,((airj =1(1)01= 1(1)ni,

tbi, i = 1(1)0

k 1

k*-k+1 k < n

J <- k +l

J -j+1 <n

rF--
3

11110

aki aki/akk

4

b

5
k+1

<- 1 +1
i<n

9

i <-'n

i
i > 1_<-1+1

X.
1

< di

j *- k+1

i -i+1
j < n

8

IT

. 7
a. a - aka.

. 3. kj

b a.
ik k

7 7

j -1

Gaussihn algorithm. for n equations Ei.n n unknownk

(without,pivoting)

232
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Answers to Exercises 7.5 Set B

2. The sequenee of arrays,is'

4

3

2

3

0

4

4

-5

4

1

1,

3

1

3
1

-7

2

-7

3

7

7
3

.237
14

CD

2.

3

®.

4

-5

-4-

1

3

1

3-

1

3
1

17T

3

7

3
23

263
3-

-9

ta

0
00

4

3

1

3
_1'-

3
1 23

3

2 14

1

3

_7-
3

1 23
7 7

17
T

263
17_

*
____."-

,
263)For the back solutions, x3 =,-Fir and- x2 and x1 successively receive

.... '

the values indicated .,,
A

_I,

23 .23 1 263 32
x2 7, 7 T.7"

7 7 1 263 382 382 4,
101 3' 3 3 17 17' 17 17

232 3 7
I.
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3 -2 7 -1 2

2 3 -4 1 7

1 2 5 2 )1

3 7 -8 -2

-0.667 2.33 -0.333 0.667

2 3 -4 1 7

1 2 5 2 11

4 3 7 -8 .-2

-0.667 2.33

443 ,tfiw-8.67

2.67

-2.33

2.33

- 2.00

2.67

- 2.33

- 0.667 2.33

72

8.00

9.010

14.33

O 2.67

0 5.6y

0
O (2.67)
0 (5.67)

4.331

111

F4.331

C) (2.6

1111

2.33'

- 2

8

9.00

- 0.667. t2.33

® 4.33 t2 6.385

0 2.67 8 f 0.163

0 (5.67) (9.00):-10.3

-0.333

1.67

2.33

-6.67

5261

10.3

-14.67

-0.333 o.667

0.385 1.31

2,33 10.3

-4.671

-0.333 (9.66i

0.385 1.31

1.30'2 6.802

-8.853 -12.098

-0.333 0.667

0.385 1.31

0;163 0.856

-8.85 -12.1

- 0.667 2.33 -0.333

(2) ( 4.331, -2 0.385

(2.67), 8 9.163

6167) (q.oc) 1-1o31

o.66/-

1.31

q.§6

-19.8

o.66/7

1.3i

1.917

xl - 0.667x2 ?2.33x3 -"0.333x4 # 0.667

x
2

- 2x
3

+ 0:385-x,=4:71.31

x-
4

A

:-



Answers to Exercises 7-5 Set C

1.
I '13

max <- la

m k

1.4

i (- k + 1

i < n
i (- i + 1

22

GO TO
17

max = 0

k

IF
19 .

F
J (- k '

)

J <
-

n
+ 1

IT
20

aki

21,

bm

Flow chart fragment for Partial pivoting

3

3.9

3
4

V.
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T7

GAUSS(n.,((aii, j=1(1))1=1(1)n),

(b i = 1(1)n),((x_ , j.+- 1(1)n),

Fk 1
k < n

k k+1

Alb

T

max b
m +- k

14

i +- k+1
i < n

i +- i+1

1

j +- k,Ll'

j +- j+1
T

20
4---4 a

,4*

i +- n

i > j7.1i 1-1+- ,

10

x.
1
- b.

1

j4-3
j >

IT
12

x. +- x, - a .x
j

+- k+1

+- j +1
lakk

3

21

m

°

a

cj
+- a a

i i- k+1
,si < n ..

i +- i+1'
' 1 T

6

j +- k+1 ``'

- j+1 .

j' < n

I T

7
-

kakj

8

- aik

Gaussian algorithm for n equations in

n unknowns vith;partial pivoting
I
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110

In order to have this flow chart also compute the determinant of the

matriX, (aid), add two,floVr chart boxes as follows. Add

0

DET -1I

immediately before box 1. Add

immediately before box 2, The final value of DET will be the determinant

of the (aid)., A receptacle must also be supplied in the hopper for,returning.

thisvalue to thetmain flow chart.

./".7

lr

241
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/

a'

Ti

fr

7c

/4

EUtBAE
= 1(1)n)1,=' 1(1)n),

1. = 1(1)n),L)

7

.8

(max _< P,OW2

'4

71 9
01 POW 2 x P0k21

j' 1
J<ii

Equilibration a

2

goritioa
0

a'a

42 --
.0

(1,



. .
;

r 0

4

1

/ n,((a,i = 1(1)n) j = 1(1)n

(si, i = 1(1)n)

EXECUTE

EQUILIBRATE(ng(

= 1(1)n), f

Box 3)

b.
1

a13
, j=1(1)n

i = 1(1)n),

3
"Method is

inapplicable"

-EXEdUTE
GAUSS(n,((aii, j =1(1)0j=1(1)0,

(b i = 1(1)0, .(

. 1(1)0, Box 3)

j = 1(1)n)

L -

.4

Call for solution. of system of equations-with einilibration

232-4 2
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Sample Test Questions

it (Chapter 5)

a. Prepare a reference procedure flow chart, CONDENSE, which receives a

vector Al, A2, ..., Ail and returns in consecutive positions the

non-zero elements of the original vector and also returns a n, the

dimension of the new vector. (Dontt worry about the values of Ai

with i greater thal4 the new n.)

b. Prepare a flow chart to read in a Vector X, use CONDENSE, and print
'4

out the condensed vector and its dimension.,

-4 Solution:

a. CONDENSE'

A
( , , i=1(1)n))

et.

5

k+ 1

i .4 1 <n

T

F
4

Ai
-

Ai

no--n -

F

242 4 4
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8. (Chapter 5)

, Write a procedure flow chart MINIMAX for inputting an m by n matrix

and searching it for an elLent which is at the same time as large as any

element in its row and as sma11 as any element in its column. Return the

location and value of this element. Provide a special exit for the case that

there is no svolf element.

4

Solution: .

MINIMAX(m, n,

((Aid, ij = 1(1)n) i = 1(1)m-4

77E1, R , .11, L)

j4-c+i
d < n

j. *--,j+1'

[Note to teacher: If the student were allowed to assume that no two *elements in
any row had the same value, then the loop in Boxes 8 - 10 could be eliminated
and the F exit from Box 7 hooked into the incrementation section-of Box 1.
The algorithm would thus be considerably 'simplified.]

215-
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Take Home EXam Question (Chapter 7)

It is often important in mathematics to know the rate of change or a

function at various-points. The rate of change of a function on an interval

is defined as the difference of the functional values at the endpoints of the

interval divided 'by the j.ength of the intervals. For example:

f(x h) - f(x 4- 1)

2h41000.!..

pis the rate of change of ,f oven the terval, lx - h, x-+*h}. If h is so

small that reduction of the size of .11 ,makes szo perceptible Cange in the

computed rate, we will take the computeAqtlte' the rate of change of the

function at x.

ko

Your job is to prepare a flow chart computing the rate of 'change of a

reference function, f, at n -i points, which divide an input interval

[a,bl into n equal subintervals. Successively halve the values of h,

initializing h with the length of the subintervals. Output the value.of the

rate when it rem ns stationary (differences less than an input value of E ).

for three consecutive trialc.

23
- .240

. A-

N.

4.
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.Solutiom

o.

t

ti

'. ti

010 4

3

O

STOP

(b-a)/n
4-- a

'4"" i < n
1. 1.4- i+1

T 4

R2 - f x+h -f x-h )12h

6

IR2 - Rid< E

S W 4--

4-- R2

h4- h/2

SW =

10

SW41- -1 x R2

11



(Chapter 6) An'impOrtant function in later math courses is defined.by

:t'gktir110' ( X'
X2 'X3 X4

1,+ + + + lt7T7 + . . .

Construct a flow chart for inputting X and c and computing approxi-

mations to EXP(X). -Verminate the process and print out the result when

two consecutive approXimations diffeb...it& less than c.

Solption: ct

I i

p

e

24245 8
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10. (Chapter 7) Hand trace through the flow .Chart.e&Figure, 7-20 with

the function f"(x) = 3x + 5 and with the input values of °E1,b, E

respectively 1, 4 and' .01. List in the table below the values

successively assigned the indicated variables. Encircle the output

value of NUAREA.

, m h s OLDAREA JAREA

Answer the following questions concerning this trace.

ar How many times-was thp lest in Box 7 made?

b) ROI,/ Many times was Box 8. executed?
(,

c) WhatProperty of the particular function caused Fhe puocep to

tenminate Wpen it did.

4

sss

. m . h OLDAREA , NUAAEA

GILD1 3 0 7512°
2 3/2 25/2 .

4
0

-Tr
1

i .

4 _ ...

,

r ,,
:,

,

4.

Since the graph of the function is a straight line the area to be

approximated is a trapezoid and all trapezoidal "approxiMatione

will-be exact: Thus the first two .approximationS ha'ie a difference
.-,

of Q which is less than .01.

246
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Chapter T8

OTHER NON-NUMERIC PROBLEMS- COMPILATION AND

t

8-1 Introduction \
This chapter is expected -Co be fairly difficult. Not only-ls the

material somewhat different from most of the material in the course but also

the chapter deals, with problems of'somewhat-greate;:complexity than those
- .

found earlier in the text. Many classes may not be able to,.over this :
.

"Material in detail. -;f desirable due to lack of time, Section 8-4 may be

skipped; but, if it is skipped, the results of the processes presented there

should be summarized for the students.- These results are

°

Program statements are.,Fead_;rom cards. Individual

statements are,separated from each other and state-

ments which may run from one card to the next are

properly joined together.

2. All blank spaces are eliminated from each statement.

3.. Each statement Is identified as to tSrie, and

a'
V. Interna*symbols are substituted 'for all symbols

1,-
and. symbol strings used IV the prograill=to identify

:.-t
. variables; so that 'every> symbol is just one element

.

of the resulting string.: 4. 4
1

4

When these results, are understood,.;;the,student ..cap.proceeslt,p the more
,,

^ exciting results of Sections 8 -5 and 8.6.

(

8-2 Symbol Manipulation ,

In this section; the manipulation of symbols is motivated by the

po'ssibility of determinilltUthorshilS,of literature when the identityof'

the true author ii-in doubt. You might', refer to the article by.Frederick

- Mostellar in the American StatiAtician (1963) ewhere.the authorship of the

TedeAlistpapers was determined (mostly by Hamiltop)with a high, degree of

probability. The cities should not be led tosthinle that'aUthorshian

always (or easily) be determined. A number of other. attempts have led to

highly questionable rbsults.
. I
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rn

rs to Exercises 8-2

lk,sbetermine if the Character ?At occurs at any place after a 'Bt.

-If,so, return a pointer to ?Al (set p = the index of 'Al).

To-solve this problem, we must search the string twice, once for 'B'

and then for lAt. The first search begins with the l'first character

and the second at the character just beyond the 2132, iOhe 'B' is'

present. A flow chart solution is:

.248'
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_

- 4
P'

2. Determine if the substring ITHr'''-"occurs at any place after the substring

'DR'. If so, return a pointer 'DR'.

This problem is similar to id. 1, except that now substrings are sought, _

so chekst must be used. Alpoinier is to be returned to the first
f-'substring, rather than the secoxid.

START

4

4

EXECUTE

chekst (n,(si, i=1(1)n)71,2,"DR",p)

CP

m p+2

EXECUTE

chekst (n,(si,i=1(1)n),m,2,"TH",q)

Figure T3-3

249
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3. Determine if the chafacters 1A1, 'B', and 'CI occur in that order,

not necessarily adjacently. If so, return a pointer to 'BI.

)
This probleM is similar to No. 1 and No. 2. Now, three searches must

be made. Since wemust return a pointer to 'B' , (if conditions are

met), we nded,a new panter (q) for the search for 'C'.

ct.

4

chekch (n,(s , i=3(1)n),1,"A",

=0)-T

EXECUTE ,

chekch (n, (si, i91(1)n),p+1,"B",p)

EXECUTE

chekch (A,(si, iF1(1)n),pirC",q)

76

= o
T "A,B,CDO-NOTi

APPEAR IN

r
,P

8
THAT ORDER"

0

Figure 26-4

250
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1

4. Identify the most frequently occurring character in the string.

A search for 26 letters is required, with a count of each resulting.

For this purpose,'the contch.procedure is used. Let the set of letters

be 21, i = 1, ...., 26: Let T.; be the mpst common letter and N

its count; these two values are to be printed by the program.
91

2

i (-1
i < 26

i (-- 14-1.

' F

4

EXECUTE ...

contch (n,ts
ik

ii,i=1(1)n),. . M

F (M > N

5 '

L

N

to P,'

efi

Figure T8-5

U

(

. ,

O



."

.

5. Find out if an' letters of the alphabet occur exactly three times and

identify them.

The contch procedure'is useful here also. Afterfit is executed for each

letter, we check the count!' If the count is 3, we print the letter.

(Alternately, if we wished! to have such letters printed at the end of

the search; we.could save them and print them later.)

I

V

i (-- 1

i < 26
i -- i+l

EXECUTE

contch (n; Is., 1=10.)n), X.,
1

{N=

Figure T6-6

252
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6. if 'B' imeediately follolt. 'Ai, substitut e 1M- for each such 'B'

in the string. Report the count of such SubstitutiO:L

We can state the problem this way: for eachpubqtring 'AB!, replace
the 'B1 by 'X', and count substitutions. We call repeatedly on

chekst to'locate appearances of 'ABt arid substitute 'X' for the

'.;character after the one to which p points. (In Problems 1 - 3 we '

needed multiple searches because characters there could be nbn-adjacent.-

Here we seek adjacent 'A' and 'B' and so one use of
.

ch4st suffices.)

0

10

.
2

EXECUTE,

chekst (n (si, i=1(1)n),.m, 2,11AB", p)

5

ei

Figure T8-7

, ..,. No answers for eiEXerCsa.-_7 - 10 inciusiie, are Included in this edition.

.

. ..,.

..
,. '.

.., , 6 t I G
A., lit
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V

EXECUTE

chekch(n;S,l,'Z ",p

4 2

p -1

EXECUTE

movea,1,q,0,T5

EXECUTE

chekch(n,U,p, "A",ni

C

EXECUTE

move(P,11161,n,O,T)

EXECUTE

move (ff, p,n,.8,17)

9

EXECUTE

Aele,tie(", ",n,U,p,m; 2,

10

m

EXECUTE

move (,in,n,.8,1)

In this exercise the length of the string, will be changed if any,. deletion

takes place. Therefore, we may as well decide to produce 'a new string T of

length Z. The flow chart then uses proCedures chekch, move and deigte.

rz
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EXECUTE

match (g, 1, 3, "NOW"; in)



T

2

a

i (--m
i > p

i (-- 1+1

(Si = k

EXECUTE nn

Move(6,q,j,2,11)

1 8

An advantage of this flirchart is that the new string-is T regardless

oi Whether or not deletion has taken place or even iiihe index p is otit'of

bounds. On the dther hand, since transfer from to to rf comes in bunches
1t4

after a charadter to'be deleted hds been foufid, move must be called twice
..,

(Boxes 7 and 9). This is a case in which use of a procedure seems to have

complicated the Slow chart.

°

EXEC
.

move (Sfq,n,2,11)

4. .

ti

Teo

O

2i9



8-3 A language tq be translated

This 'description is only as det ed as will be needed for the remaining

discussion of this'Ohap-ter. It is not a complete definition of a source

Atitlanguage; butr a's far as it goes, yields a language qUite similar to many in

actual use. Prohibition of such items as subscripts or signed variables in

assignment statements is not due to any great problem in their-lordcessing,r

rather their presence would only further complicate the exposition of am

already complex problem without adding great insight.

Classroom discussion of the "is there more data?" question should be

held even though it is not explicitly treated in the text. The difficulty
.

is that different computers will behave differently if they run out of input

cards., Some will just stop, others will automatically transfer control to,

some predeteinined instruction. The only uniform way to treat the question

is to require that a card follow the last data card and that that card con-

tain some special coding (e.g., an asterisk Column 1) which is testable

by the program and indicates that there is no more data. Obviously, no data

card can be allowed to have the same coding as the,"end of data" card.
°

,

t

e 4h
4.

3 ,

,

9
:

4

2,7260
a

1*

e

ti

to

a

O

a
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8-4 'Presopn (the steps of adompiler).

X
.1

4p

In the d iscussion of Figure 8-10, the thrap "liteul characters" is.

0.. Used. This simply means characters aDpeal-ing in a source program which stand
--.) ..p. ,

for themselves. We have encountered s mething -simints. in utplA strings
,

earlier.and we use the same notation_ ere. Namely thee
_

:. .

.,' ... ..... . , "E". is the character' E. itself'.,... "
, . . . ,

. "END" isthestring ofcharecters END . '

. :

The t6Aointsyout that regardless of whether or,not a colon is found
. -

. by the chOph procedue in BI;)X 3 of Figure 8-13 incrementing_ q by one in '

Box 1Q yields its desired value. The student isb.not asri-ed why this is so. 4)4

, ..
.

We can answer this "why" by recalling -Le object of Box 8 which is to find
,

s
,

the first doositien of the string in which the-letteis "E" the word

. could occur. I;sthe:statement has a label; a colon will be ound by Box 8

. Ht. and q will point at that cblon so that q42q"+,1 sets th ()inter at the

proper place:,toltest for "E"). If the statement does not have a label, ...\

,Box 8 sets q to zerotso that agairl incrementation makes .4 point,to the '

first character qf the statement wheri--"E". might occur.
.- ,-

Sections'8-5 and 8-6 will assume'someiexposure to Example 1 of this section.
,

,

,
, -;

.'
, PO r

It'shOuicrbediscussecifor.this reason if for no other. The purpose of
. .,...

the process proposed here is to replace whateveridentifier the _programmer-..
I

may.originally have written (whether long d (short) with d.dentifierS of uniform

"structure, e.g., lengths, so that each identi ier can be'thought of as .occupying
. , .

just one element of a string. In SomelanguageS"the form of the riternal
O . ..

identiFiers an be Ustd to encode iiiformatioii about hem (e.g., whether they .

, ..

-..

represent real or integer numbers). In the language of Ghapter°8, all ,
.

variables represent real numbers so...ttat the need for this type of dit-tinciibn
.., ::-..- -
,.. does not arise..

..._. .-

. ,

> ,- -N -L__.c .
_ ' . .

..

e._ Each of the,examples in this section is-presented in two stages--the
... " _

general, or overall qescription followed 'by an'implementation via detailed

Al"4"."'1'

flow chart. The latter build'on the material in Section 8-2:: We carefully\'
urge the student to skip th detail during the first reading so that you and

he'caZget on to see'thp more interesting developments ,in Section 8-5. Time

'permItting,tall can return toSerioni8-4 for a more detailed' look.

P.



8-5 The Decomposition of Assignment Statements

The deComposition of assignment statements is usually thought of as the

heart'of the compilation process. Section 8-5 develops the background

enabling us to state a rule for decomposition of assignments. In Section 8-.6

we trdnsform6this rule into flow cNirts.

It should be remembered (again and again) that the assignment statement

is assumed tb have been processed through the prescan of Section 8-4. In

particular we assume that onlnroperly. written statements are to be dealt

with. No protection is provided in case the assignment statement is im-

,, properly formed although most actual compilers do provide such protection.

. The key that makes decomposition practical is the use'of a parenthesis

/f ee way of writing an expression.- A binary expression is normally written

with the .operator separating its two
,

operandsi that is,:
....,/,.,_

,-,
.

. .

b,..- a -t b, ,aX b, a / b. or a 1 b .

.-ThIs is ce.11eeinfix form. The text makes use of a different way'of writing
- ....*-

Such expressions called 1.postfix form.: /
, .,

ab+, ' ar.-,.. abX, abJ, or 661 .

. A third form also exists, called prefix form :

,

: +ab
,

-ab, Xab; tab, or f ab .

-:
,

.

prefixe' To illustrate fi form: .
.,

A-+BxC is written al + A X B C
t

AXB C _is written 'as +XABC.

(A + B) X C 4 , is written a§ X + A B C

AX(B + C) is written as xA+BC

In either pre ix-orjoostfix form, parentheses are unnecessary.to indicate

the order. Iri prefix form, opeatIons are performed in the order in which
,

operators appear when scanning the expression from-right to left. In postfix

form, operations are perto ea in the order in which the operators,appear

when ,scanning the expressio from left to right. In :the text we.have chosen

to use the postfix form simply because people are accustomed to reading from

left to right. Either schemelcan be Used in writing a computer program.

The studenfr is asked to complete a liOrf instructions for evaluation of'

1the postfix form:
e'

Z A B X C +C 2.1 i.B A- -A2 f B +2+ /

259
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The completed list is:

1. multiply A / by B

2. to this add C

3. -save that result (call it a) and square ,C

4. divide a by the square of C

5. ,save that result (call it 0) and subtract A from BY

6. subtract from 0 the difference, B - A

7. save that result (call, it Y) and square A

8., save tha-C'resdit (call it 8) and square B

9. add the 8 and the square of B

10. square the result of Step 9

11. divide Y by the result of Step 10

12. assign the result of Step 11 to Z.

I

To find an automatic transformAtion to pntfix form, a lorecedence table

is presented in 'Figure 8-20. The upper half of the table dontains arithmetic

operators in an order that agrees with experience (and the presentation of

Chapter 2) as to order of precedence.' The lower half of the table contains ,

symbols that are not generally thought of as operators. We call them "isolators"

at firs% but we will discover it useful to assigri them precedence values and -

tor present. purposes to)oall them operators. A simple example is then presented

to motivate consideration of adjacent pairs of operators as the basis of a

,transforMation rule.

A tentative (and incomplete) rule is then presented and tested agairist

an example. During the test, displayed in Figure 8-21, ye find Greek letters

being used to denote intermediate result. The choice of Greek letters is

purposeful toefthasize what will be discovered promptly: that it is

important that an intermediate result be obviously identifiable as such and

as something different from the other symbols in the string. Following the

tentative rule we suddenly find that,the Greek letters representing inter-

mediate results appear in the generated string where the.operations they
ifa

represent alrekly appear. Clearly something is wrong. ,

.1

a t6o

2000
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Additional 'examples are

'Expression

(Al 2 +,1312 2)1.2

TripleSubstitution

a for "A }2

(a + BI2 + C 2)1 2 ' f3 for i3 ei
(a+13 +C12)1 2' .' a, for a f3

(cC+C1 2)1 2

(a. + $)1 2

a42

C42

a for 'a + f3

a for a 1 2

Generated String

A24

A21 B21

A2.1 B2f +

A24 B21 + C2$

'A24,B21 + C24+

A24.B21 +C21 + 21

One might think that an indefinite-number of intermediate results might be

produced.

This could happen for particular forms' of expression, such as:

0 I Al2 + B12 x.(C1 2 t DI2 x (E 4.2 )))))

However, in most situations/two or three temporary internal identifiers are

found to be sufficient.

Another example illustrates the importanc'e of using

if you want to indicate an ordering.of operations.

Etpression

AxB CID

A .vB + a'

ea

Triple Substitution

a for C 4 D

13 for A X B

a for 0 + a

parentheses carefully

Generated String

CD$

CD AB x

CD1 AB X.+

-,'

Note that_the commutatj.vity of addition has-been assumed.

the sequence of operations is iMportnt, one should write

insure that the addition is done in the desired order.

The st nt I asked to experiment and decide what to

pair

,
If, in practice,

(A x B) -1! D to

do when an operator

equal precedence; whether or not to select that operator'pair.. A

e could be developed for either choice. Externally the difference -is in

whether a series of operations of equal precedence (for example, A tB + C t D)

is to be done left to right or right to left. Internally, choosing to select

an operator'pair under the condition of equal precedence (i.e., left to right

execution) aidgn the economiZation of temporary internal identifiers of

intermediate results. This is demonstrated in the first of the additional'

examples given.here.

r.
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Other decomposition algorithms

The algorithm which we develop here is by no means the only *ma used in

the computing professi'n. Indeed it can hardly be:construed as the best. We

were Motivated to present this one primarily because it is not necessary to

digress for the purpose of introducing the concept of a "stack ", which is a

programming technique used in explaining the way most compilers function. A

stack is a last-in, first-out storage device% Another name for a stack is

"push-down store ". You will find'many references in the literature to."stack

compilers". A readable account of one of these compilers for instance, can

be found in the paper by Arthur B. Evans, Jr., "An Algol 60 Compiler", Annual

Reviews of Automatic Programming, Pergamon Press, 1964.

4

I
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4swers to Exercises 811 Set A
I. . 1

List the ordeg in whiih you would_do the operations for.each of the
.--.

A
following. Ident'ify"the reasons for,your choice of orderings.

. X

(a) A + B x. C ''- .

Multiply B by .,C then add 'A because multiplication has ca

highey precedence than addition.

(b) AZ + C

multiply A by B then add C ,because multiplication has a higher

precedence than addition.

(c) .(A + B) x C

add A and then multiply by C because a parenthesized

subexpression must be evaluated before multiplying.

(d) A X (B + C)

add B and C they multiply by A because a parenthesized

subexpression must be evaluated before multiplying.
,

.
'

(e) A-+ B rx D . !' ''' , .72

firs form B
c

, multiply that by D, then add A because the

order of precedence is exponentiation, multiplication, then additiOn.

(f) A"-1- B 1 (C X D3 ,

multiply C by D, form BCXD, then add A because a parenthesized

subexpression must be evaluated first, then the wecedence of

operations is exponentiation before addition. .

({3 -,j) AnsWers are similar to those above.

Answers to Exercises L-2 Set B

How'would-Ahe expreSsions of Exercise 16(e) through (d) be written in

postfix neoetionZ
;;

.

o*?'?'

(0 7t-+ a f; c X D becomes ABC 1 D x +

,(f) A + B $ (C X D) becomes AEC!) X /

(g) (A. B)4 CxL becOmes AB +C1Dx
(h) A1 -B. + C X D becomes AB CD x +-

(B + C) kteoomes AEC + p x ,

(j) Ai (B + C X'D) becbmes ABU t
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Answers to Exercises 8-5 Set C

Statement

Z.A+BxC;
Z.4-4 A + a;

Z.4 (3

(b) Z.-- A x B + C;

Z. a + C;
Z. 13;

(c) Z.-- (A + B) x C;
Z. a x C;
Z. 13

(d) Z. A x (13-+ C);
Z. A X a;
Z. 0;

(e)
7,4 A + ax D;
Z. A + f3;

(f) Z.-- A + B I (C x D);
Z.-- A + B

Zr A + 13;

Z. 1';

Triple 'Substitution

a for Bx C
13 for A +, a

. Z.4 f3

a for A x.B

for a + C
Z. 13

a for A + B
13 for a x C

Z. 13

a for B

13 for A X a

Z. 13

-a for B. t ,C

. 13, for 'a x D
for A + 13

Z 1'

a. for C _x D

13 for B f a
Y for A + 13

Z 1'

Generated String

BC x

ABC x +

ZABC x +1

AB x

AB x C )4.

ZABx C

AB +

AB + C x

ZAB + C Xi

BC +

ABC + x

ZABC + x.

BC I .

.1. BC D x

ABC D' X+

ZABCI D x

CD x

BCD 'x

ABCD x +

ZABCD X
.

, (g) 2,.. (A + B) I :C x D; a for A + B AB +

Z .4 ct I C x D; 13 for a} C AB + C I

Z.= 1 3 x D; Y f c r r 1 3 x D AB+Cl DX
r-:zA}? +cf D x .4ie..- Z. Y; Z. I

., , .

(h) Z.A I B +C x D; a for Al B .:, AB I

Z .4 a + C x of 13. for C x D' AB V" CD x 4
Z I- a + 13; Y for q + p a I eiK 4.:

Z.-Y; Z. I ZAB I CD x +.4--' , ,.'
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1) Z A (B C) X D; -a for B, + C BC +

Z.-- A 1 a X D;, = 0 for. A 1 a ABC +

Z.- 0 X D; Y for 0 X D A B C +-1 D x

ZABC + DY; y

(j) z2 6A f. (B + C x. D);: a for C x D CD X

Z.- A 1 (B + a); 0 for B + ct BCD x +

Z.- A 1 0; I for -A 1 0 ABCD X + 1

- Z.- Y; Z.- 1* ZABCD x +1 4--

;.

2. Statement

z.---((A)04-c)/c 4 2 - (B-A);
/(A 12+S1 2)1 2;

Z.-( (Ci+C)/C 1 2 - (B-A))
/(A 4 2+B 1 2) 1 2;

Triple
Substitution

a for A X ABx

' Generated String

'0-for a+C ABXC+

.--(p/c I 2- (3.-A)) Y for C1 2 AlfiXC' +C2t
/(A4-2-1-B12)t 2;

(B-A)) 5 for 0/1* ABxC+C2 /
/(A t 2+B t 2)1 2;

Z.-(5 -(B-A))/(A1 2 +B$ 2) 12; E for B- A ABXC+C2 /BA-

ef

Z4-(6 -)/A1 2 +B12)} 2; * 4) for 5 -E ABxC-42 1 /BA--

Oa

Z4-4/(A f 2+ B 12) $ 2; p for At 2 ABXC+C2 f /BA - -A2}

Z4-4/(p + B1 2) f 2; µ for B f 2 ABXC+C2 f /BA-- A2}. B2}

Z+.4 /(p + pat 2; v for p ABXC+C2 4 /BA--A21 B2 f +

Z.-41%/j 2; a for v 2 ABXC+C2 1 /BA--A21 B21 +214

Z4-41a; N for 41a ABXC+C2 /BA---A2 B21 4-2 /
A

ZI-N; i.- a ,''ZABXC+p2t /BA--A2 B21 +21 /4--

Yes! .
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. SUPPLEMENT

The Tree Seerchph Applications

to; the

Four Color Problem and'Games

This unit is provided for the teacher who may have gifted or enthusiastic

students who4want to try their mettle on some really-hard algo4.thms. Also,

this material could be used as the basis for supplementary lectures. The unit

does not use functions or procedures and hence could be inserted any time after

the completion of Chapter 4.

Since the exercises in Chapter 6 and the first five sections of Chapter 7

are rather few in number, this unit could be used .kts a project to fill that dead

spot.

If the students are to.beeskedtodeve4op the four :7coloring algorithm,

it is suggested that 'the material up throuelthe reduced connection table be

duplicated and, given them. In the case of the game of "31", the student`shoula

be-4311mi the material up through the rules of the game.

The Tree Search

i4
Two examples of trees are shown beloW.

. ,

We see that there are a number of "nodes" on these trees with one branch coming
s .

into each ri6de and two or more branches emanating. lit further pictures we will
: .

,o omit the arrows and assume it to be_understooethat the direction of growth is
,

,upward. '

. ,

T6 9

0



ST e"-

By a segment we will mean one of the vectors reaching from one node to the

next one. By It branch we mean a segment together with everything that follows

it. Thus, a branch is a "sub- tree" of the origiinal tree. In climbing a tree,

when we arrive at a given node we choOse one of the segments emanating from it,

advanOe along this segment to the next node and again choose a segment, repeat-

ing this process until we reach the top. We see that we can reach, the top at

many different points. However, once we have reached a certain int at the.

top, there is only one path by which we may descend.

A number of mathematical problems and a great many games have the tree

search as a model. In a tree search we attempt to find a patOrp the tr&'to

one of a number of segments on which a desirable'object is located. Since, ih

,most applications, the number of paths is formidably large, the task seems

quite discouraging. However, it turns oot that in the applications there are

certain .segraents which we are barred from choosing. (The inadmissibility of-a

segment can on] be determined after we have climbed to that' position.) Sinqb-

a forbidden segment removes a whole branch from consideration, the size of the

problem may be drastically reduced.

We next present a systematic procedure, i.e., an algorithm, fovelonducting

a tree search. Or actions are most easily described in the following flow

Chart.
e

1

Go to the lowest
node on the tree.

2
Are there any more
untried segments at

Yes this node?

3

Select from among these
untried segments the one
furthest to the left./

(
Is this segment

admissible? di

fes
5

CIs the seardif\ Yes
completed?)

po
6

Advance along the
selected segmefit

to the next node.

4

. 7

Are we at the lowest
node on the- tree?

Yesi

9
Output the news that
the search has failed.

10

Output the necessary
information..

Generalized flow chart for a tree search

26§
2 7 Oa

1

8

Descend to
the' last

preceding
node.
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----In applications, some of the boxes in th±s flow chart (especially Box 4)
i.fr

may be broken down into a number vf flow chart components.

Our first application of a trek search is the problem of determining

whether a given map can be colored with four .colors. This problem is modeled
.

by a tree with four segments emanating from each node. Each path up the tree

represents a coloring of the entire map. The forbidden paths are thoge which

would result in some-countryhaving the same color as a neighboring country.

The. desired object is to reach the very top of the tree a10ng a permissible ,

Before developing this algorithm we provide a discussion of the four color

problem. Much of this material is background material and may be skipped if

desired.

The Four Collor Problem.

Maps are colored so as to make it easy to see at a glarlpe the extent of

each country. It. is clearly necessary that neighboring countries#(i.e., coun-

tries with a common boundary line) should be assigned different colors. This

is the only requirement we impose on the coloring of maps. '

A checkerboard7is an:example,of a map which can be colored with only two

colors. The four country map shOwn below requires four color,g. The reason for-

this is that, each pair of countries being adjacent, no two can have the same

color.

0

4..

It plidnIt take as long to find a map requiring four.colors. 'Yet; n over

a hundred years of searching, no one has succeeded in finding a map requiring

five. It is natural to conjecture that every possible map can be colored with

four colors .and many mathematicians have racked their brains tryingoto prove '

this conjecture. The 'best they have been able to do so far is to Show tha

every mall can be colored using no more than five dolors. (In fact, .a very

simple proof of the five color theorem exists which is quite suitable for

'., 269

271
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presentation to high school students. See, for example, Courant and Robbins,

-What is Mathematics?)

We are about to see how computer methods can be applied to the four color

problem. If the four color conjecture is true, a computer 70.11 not be able to

devise a Proof,of it. If, on the other hand, the four color conjecture is

false, a computer milt be able to find that out. In Particular, foi. a given

map, a computer can determine whether it can be colored in four colors. That

is the task for'which we will construct an algorithm.

Before we present this algorithm, a few remarks concerning the coloring

-::of maps may be helpful.

A minimal five color map is a map requiring five colors and such that every

other map requiring five colors has at,least as many countries. It is easy to

show that if ;alas requiring five colors do indeed exist, then there exist min-

, imal five color maps satisfying:

i) no point is a boundary point of more than three countries; and

ii) ach country is a neighbor Of at least five others. (Every minimal

map must satisfy this condition.]

It is customary to consider as candidates for counter-examples to the four

color conjecture .only maps fulfilling these conditions. We do not need to use

these conditions'in our algorithm but their proof,is established by the follow-

ing map fragments.

4

Digression: Establishing Condition (i) and (ii)

To establish the legitimacy of requiring condition (i), suppose that the'

map fragment on the left is a part of a minimal five color map.

Condition (i) is clearly violated since the hub of thq wheel i$ a boundary

point of six countries.

- 270
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But that objection is eliminated by the modification shown on the right. ,

This map has the same number of countries as tile original. All countries which

were neighbors before the'modification are still neighbors, but now country 1

has three new neighbors. Clearly, this modifiedap will require no fewer

colors than the original.° Thus, if the original map was a minimal five color

map; so is the modified maps. This same modification can be made at all points

which are boundary points of more than three countries, thus establishing

property (i).

To establish the legitimacy of requiring property (ii), suppose that the

fragment on the left below is a fragment of a larger map which is a minimal

five color map.

Here condition (ii!) is violated as country 1 has just four neighbors.

Now we obliterate the boundaries between 1 and: 2 and between 1 and 5,

thus making'countries 1, 2 and 5 into a single country in the map on the

right. This map has two fewer countries than the original. Since the original

was a minimal five color map, the revised map must be four colorable. We

suppose, this to have been done in the figure on the right above.

NeA we xlestore the deleted boundaries and uncolor country 1 as shown in

the. figure on the left below. In this map country 1 has fou neighbors but

these neighbors have only three different colors, since 2 and 5 are colored

the same.

27'2 '7 `)
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7

. Thus, the, fourth color is available for country 1 ad seen in the figure

on the right. Anil now the whole map is four coloredt. This contradicts, our

assumption that the original map was a minimal five color'map and hencetestab-

liShes property (ii). If countries 2 and 5 haveA common boundary outside

this fragment, theri in the entire discussion use 3 and 6 stead ofd 2

and 5.1

,Four Coloring as a Tree Search

We will model the,prOlem of finUng a four coloring of..tiven map as a

tree search. The,tree will have four segments emanating-from each node. Each

country (except for the first three) will have a400rresponding level of nodes.

country

7

4 -

.

.

The segments emanating fromstie nodes,at the n
th

level

possible colorings of the n
th

country. The particular

reached at the n
th

level represents the history o
1r,
f the

.

to lower numbered countries.

2722
C

represent the four

node which we have

colors presently assigned

4
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The inadmissible segments are those which would, result in a country being

ditiven the same'color as a previously colored (18wer numbered) neighboring .

'Country. Which countries are neighbors depends on the particular map and will
, .

have to be input as date;

The object of the march is to fifid a path from the bottom of the tree to

the top in which segment is Admissible.
,

Preparation for the Algorithm

It will simplify matters greatly to follow the ensuing discussion using

the map provided In the next figure as'an example. The, first step in preparing

for the algorithm is the numbering or indexing of the_countries. As you see/

this haS'already been done.

The efficidncy of.the algorithm will be greatly improved if each country

borders on that wi th the next low?r number and on at leash one'bthencountry
.

with a lower'number. We do not absolutely insist on this.
,

. We do, however, require that the first three countries all be neighbors.

of, each other.

Example of map to be four coloidd

273.
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Wip the numbering has been done we construct the "connection table ",

listing, after each.country all of its neighbors in increasing, order.* This is

shown for out example in Table -I. Next we construct the "reduced connection

table" by striking out of each row in the table all numbers greater than the

number'of the row. The reduced connection table for our example is seen in

Table II. The subscripted variable wi, givev, the width of theq
th

row. We

ti

now have all the input required for our algorithm. .

4

Table I. The Connection Table for,the Example

Region Neighbors I Region

1. 2 3 4 5 0 6 21. 10

2. 1 3 '7 8 9 22. .11

3. 1. 2 4 9 10 11 -23. 12

4. 1 3 5 11 12 13 , 24.' 13

5. 1, 4 6 13 14 15 25. 14

6. f 2 5 7 15 16 26., 15

7., 2 6 8 16 17 18 27. 17

8. 2 7 9 i8 -19 ,28. 17

9. 2 3 8 E0 19. 20 29. 18

10.. 3 9 11 20 21 : 30. 19

11. 3' 4 10
7

12 21. 22 31. 20

124 . 4 11 13 22 23 32: 21

13. 4 5 12 14, 23 24 33. 22

14. 5 13 15 24 25 34. 23

5 6 14 16 25 6 35r 24

18. 6 7 15 17 26 36. 25

17. 7 16 18 26 27 28 37. 27

18. 7 8 / 17 19 28 29 38. 29

19. 8 9 18 20. 29 ,30 39. 32

20. 9 10 19
11-

.30 31

Neighbors

11

.12

3
14

15

16

26

18

'191

20,

21

22

23

24

28

25

26

30

33

I

20 22 31 32

21 23 32 33 p
22 24 33 34

23 25 34.r 35

24- 26 35 36

17 25 27 ,36

28 36 37

1,7 29 37

28 ,30 37 38

29 '31 3a

30 32 38

31 33 38; 39

32 34 39

33 35 39

34 36 39

27 35 -37 39

29 36 38 39

31 32 37 39

34 35 36 37 38

*Actually, the'connectinn table is not used. Its only purpose is in clarifying
the presentation of the "reduced connection table".**' e.reduced conhection

I' I,
table.could be presented diNeetly.

271!
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Table II. Reduced Connection Table for the &ample

r
countty'

i

neighbors
CONNi

width
w
i

country

i

_ neighbors

CONN
ij

width
-1 4i

, 1
t

0, 21 10.11 20 3

2 . 1 1
1110'

22 11 12 21
.. -

, 3

3 1 2 2 ' 23 12 13 22

4 1 .3 2 24 13 14 23. a 3

5 1 4 ' . .2 25 14 15 24 ", . 3

6 1 2 5 3 26 15 16 17 25 4

7 ' 2* 6-:2 27 17 26 '- 2

8 2 7 2 28 17 18 27 3

9' 2 ..3 8 3 / 29 18 19 28
.

3
.

10 3 9 . 2 30 19 20 29 . . 3

11 3 5 10 ,3 31 . 20 11 30 3
0

12 4 11 2 32 21 22 31 3 _-
13 4' 5 12 3 33 22 23 d2 . 4
14 5 13 2 34 23 24 33 , 3

i5 5 6 14 3 35 24' 25 34
. .

16 6 7 15 -3 36 25 26 27 35. 4
.

17 7 16 2 37 27 28 29 36 4 .

.18 7 8 17 3 38 - 29 30. 31 32 37
/5

19 .8 9 18 3 , 39 I''' 32 53 34 35 36 37 38 7

20 9 10 19 3

The Four Coloring Algorithm
(

, .

We aie IlDw prepared to present the four coloring algorithm seen in the
I .

accompanying flow chart. The boxes are numbered starting wi,:th 11 for ease

camparisoh with Elie generalized flow chart for a tree search.
o.

Box 11 is our input. It gives the number of countries, the reduced connec-

tion table and its widths.

COLORi represents the color (1, 2,.3 or 4) teAativelY given -to tl*.ith

country. Since countries 1, f,yand 3.are mutual naigbbors, they must have

distinct colors, so we arbitrarily assign COLORi, COLCR
2

and 661LOR
3

the

values 1, 2 and 3 in flow chart Box 12. 3n Poxes 13 an 14 the rest of the 4
countries are blanked.

, 1,4
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START

11

(n,(w.,i=1(1)u), [(CONN. j91(1)w ) i=1(1)n)

12,

COLOR1*-- 1'

COLOR
2

2

COLOR 3

.13

4 F
<

ii i+1
. 1T

/r
15

4-- 4

< n

1

F

17

COLOR 4- COLOR +1

3.8

3t-1
i < wJA-J+1 . )1

T_

F

T COLOR < 4 F

COLOR = COLOR'
CO

9

FoE colpi

"A 4 coloring of this

map is",

(COLORi, i = 1()n)

20

> 4)

VT

COLOR 4- 0

14- i - 2

R's

23

p cannot be

4 col ree

4
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.' On emergipg from the F exit of Box 1-the tree search begins. The rest

of the flow chart is an exact parallel of the generalized tree search flow

chart. In the ensuing discussion of the four coloring algorithm we will giveO
.

parenthetical 'referenCes to the corresponding boxes of the tree seaeca flow ,-

-;-

chart.

In the initialization portiOn of,Box 15 (Box 1) we initialize the value of

the variable i at 4. This variable should be regarded as'a pointer which_

tel s'which country we are attempting to color (which level of nodes we are

at

In"Box 16 (Box 2) we make a test to determine whether any more colors are,

available to be tried for the i
th

country. On emerging from the' T exit we
)tentatively assign the next numbered'color to the i

th
counpry'in Box 17 (Box 3).

Now we go through the loop ift Boxes 18 and 19,(this lodp corresponds to Box 4)

to determine whether the color assigned in Box 17 is admissible. That is, we

check to see whether this color has been given-to any of the previously colored
.nefgbbors of the-i

th
country.

If this color has been used on a neighbor We will exit from the loop on

the T of Box 19 back to the test in Box'16 where we check whether another

color is available to try for the'i
th

country., If, on the other hand, we find

that this color has not been used on alheighbor we emerge from the loop at the

F, of Box 18,_ihcrement i by 1 in the incrementation portion of Box 15
.

(Box 6) and VroCeedrtd the coloring of the next country.
o

AgNOOW
If at any time we in Box 16 (Box 2rthat no more aclors are available

to be tried for the i
th

country, then we have to go back to the previbus country

(go back one node dowri'the tree). First we check in Box 20 ( x;7) whether wet.
are alr ady at the base,of the tree. If we are at the base o the tree,, we

output he news that-the search has failedin' x 23 (Box 9). ,If we are not
4 I that the ase of the .-treelie uncolomtjae_i co try in7to4 21.and go back one ,

node. This stepping back one node is.accomPli by, stepping back two in

Box 21 and up one in the inciementation,portion of Box 15. (These together*

correspond to Box 8.)

' If we ever emerge from -elle F exit of Box 15 (the test portion of Box 15

correrponding to Box 5) then the vector,COLOR,contains an admissible coloring

'if the entire map which 'we print out inBox 22 (Box 10),

<

A
'

. .k

t
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Improvements, and Mddifications 1.
The greatest fault in the algorithm occurs when we have not succeeded in

'numbering the countries so that each borders on its pfedecessor. In this case*, ,

there is little use in stepping clowli, the tree one branch at a time. We may as
thwell drop down until we -first reach a neighbor of the i country. For only

these neighbors can contribute to the blocking of the coloring of the i
th

country. Unfortuiately, the incorporatioriof this feature immensely complicates

the algorithm and we will discuss s such a modification here.

Another drawback of this algorithm is that we cannot predicf in advance

how long the program will require for execution on a computer. We might then

decide o cut the process off after the millionth or MAXTRYth setback in, Box 16.

But then we would. have no information at all from our program. Me.might there=
1fore decide to print out the present state of the coloring process before any '

setback in which the number of countries colored has.reached a new high, NEMHI.

These features are incorpOrated in our final modification of the-four color

flow chart. The modifications areseen in Box 12 and Boxes 24-30.

c.

4

A

,

a

1

1 w
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41,(141.2:,1 = 1(1)n),'

((CONNij, i = 4..(1)wi), i=1(1)c)

'13.

(MAXTRY

. 1 12

COLOR14-- 1

COLOR2

COLOR
3

COUNT
NEWHI 3

la

its 4
it-i+1

<ri
F

4 1

COLOR S'0
1

15:

1*
t*-i+1

i <n

w(T 16

(COLOR
i
< 4)

"A 4 coloring of this
map is"
(COLOR1, i = 1(1)n)-/

.

17

COLOR R +1

a8

1 FF+1J < wi

IT
19

COLOR COLOR
CORNii

t.

ke,

'25
> liES4HT

126

COUNT4 COUNT+1

27

com<maric0

ST

"No more money",

(COLOR J=1(1)1.21)

T 23: 1.
r(0i Ri4"C) This map
iA--i 2 cannot be

, colored"

Modified4.:coloring algorithm

2 8

a.
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Tree Games

7' A great many games are modeled by trees. We will call thed games "tree

games". Among thtse tree games are chess, checkers, go, nim and tic-tac-top.

In tree games each segmpnt represents a move orilay by one player'or the

other.:Each level of nodes corresponds to the number of elaps'd moves. The

inadmissible segments represent illegal moves: Each admissible path from the

base up to a given node represents a partially completed game.

-IDne computer problem associated with tree games is that of "teaching the
4

computer to play the game". This problem is interesting as it relates to

human thought processes. At this time considerable success has been achieVed

in. teaching machines to play checkers and somewhat less in teaching them to

play chess.

But that is not the problem we wi3,500Consider here. We will consider the

problarof determinfng the outcome of the game in the event of best playAby both

players. (There are other ways of analyzing this problem, which, for some

games, may be considerably better.) was),

Tree games all have the property that if both players were omniscient and

could see all the possible consequences of all the moves they could make (as is

actually the case with ti,c-tac-toe), then the result of the game Would be fore-
.

ordained as a win for the first player, A win for the second player, or a draw.

For any of these gates algorithms can be devised for determining the pre-
-

destined result. However, most tree games are either too easy or-tpo difficult

4

for computer analysis. For the games of chess or go the pzfoblem is ridicu ously

beyond the powers of a omputer,- The highest speed comput,i working full time

for a billion years wou d not scratch the surface of the problem. On the other

hand,'the games of nim a tic-tac-toe are duffidiently simple that rules.can be

giien for 'the strategy leading to the best result (a draw in tie -tad -toe and a

win for the first or second, player in nim depending only on the initial numbers

'of sticks in the piles):

The tree game we have chosen'to analyze here is very simple but it will

illustrate the main ideas.' This game has the pedagogical advantage, that' the

best strategy is not widely known The name of the gate is "31". The rules
ht.

are quite trivial. A single die s rolled and the number that comes is' .

,
.

, .

recorded., then each of the two ayers proceeds in turn to turn up t enunitig

of his choice, except that,the numbers currently on tie top and bott are in-,
1admisOUle The numbers that the_payIA-ers turn up are

1

all added to a single
.

rUllaing total'Whiphasas its initial value the number rolled at the beginning
. .

8()

).-S) 2
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of the game. .A player bringing this total to exactly 31 wins the game; a

player exceeding 31 loses.

We see two ways in which the game differs from some other games: First,

no draw is possible; second, a player can win or lose at his own turn. The

number 31 is quite arbitrary and could be changed to any other number.,

Tree games differ from other tree searches in that a result which is

desirable for one player is undesirable for the other.. This results in the

Characterfetic pattern of analysis. First, a path is followed up the tree
Ase W 1

until a conclusion is reached. rThen the losing player takes back his last move

and tries another move. This game JIG played to its conclusion, the loser re-

tracting his lest move, etc. These move retractions will eventually carry us

to the base of the tree. When a retraction would carry us below the base of

the tree, the most recent winner has an incontrovertible win as his opponent

.' has exhausted all of his resources for improvement.

. ,.

''In the flow, chart which follows, the two players are numbered 1 and 0,

1 playing4first., It iseasiest to consider that at each turn there are 6

posiible.plays, two of which are inadmissible.

°-\

Again the algorithm is analogous to the generalized tree search algorithm

except that the output in Box 10 is replaced by climbing down the tree to let
. .

.
.

the loser have another try. In discussing the following flow chart we again

make parenthetical references to the generalized tree search algorithm. An/.

abbreviated description'seemsto be in, order, in view of the similarities With

the previous examples.

1
I

The variable i denotes, from Box 1 onward, the number of the move to be

made (the level of.nades at which, .re located). The vector PLAY records

all the Ivies Which have been made in arriving at the piesent,positio . The

1variable PLAYER assumes thd vale 1 for odd numbered moves and 0 for even

nadbered moves and, indicates which player has the make. SUM and WINNER are
.

_ ,

, .

self-explanatory.

In Boxa11-14.tlie game is:being set up for play. The initial roll of the
,

die, PLAY°, is input and. the variables SUM, PLAYER and PLAY are initiated., In
. ?. .

Box 15 (Box 1) the search commences. In Box,16 (Box 2) wp test to see whether
i

apy map ,moves are available t be tried at the ith turn. If so, we select the

next numbered, die face inLBox '.7: (Box 3) and test for in Box:le (Box 4)
It

, *4. / .

.remeMbering tilatAt e sum of the numbers on opposimb faces of i die is dlways
... .J.... . V 4'

- :equal to 7. Aft Or augmenting r running total iji Box 19 we.test to gee '--
. ,

«-.-- 5
, ,...

i

*wheacr.a gar lead: (*cep 19 d f 0.,ar:?/1kqui ito x 5.)

-i4 4 *04
f',. :

. ,, A 4......

,

:
b
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1 < 20
F

15

T
14

IPLAYI4---

A28 .

', 16

(PLAY1 < 6) F

T
17

PLAY14- PLAY +1

PLAY. =--PLAY
i -11

or
pLAyi = 7. - 'PLAY

8

F

SUMt- SUM + PLAYi
i20

(SUM. > 31)

SUM SUM - PLAY

27

41L-(WINNER=PLAYER>---
T

F 21

+ 1

PLAYER t--1-PLAYER

22

SUM = 21

23

WINNER PLAYER

YY

i
2

1

28

"WINNER
IS",_

WINNER

SUM IL- SUM - PLAti

PLAY <- 0

PLAYER t--- 1 - PLAYER
14-"' i -1

F

24

WINNER4-,1-PLAYER

Anallz,ing t

f

ft

e gene" of !`31':

of
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If the game is not completed, theipyilege OP Moving is given to the opponent in_

,Box 21 6) and play continues. Boxes 2.2-24 are a substitute for Box 10.
X..

Here, if
I

he game was seen to be completed in Box.20, we designate theapprop-

riate playas winner. (It is unnecessary to allow the player who has just
--.-,T, liobt'

moved to retract his move and try again in the case that he,hap lost, for any

moves he hays left will also lose. This feature is peculiar to this particular

gamed, . ,, - ., ,.. .

14 the event /hat a player .has run out of moves in Box 16 or that a winner::
...

has been designated in'Boxi23 or 24, we must climb back down the tree. First_
.,-

we must Aeterminef,h Box 25 (Box 7) whether these are any earlier moves to
., i. ..

return to. If there are, we step back one move in Box 26 (Box 8) after first
.. .

.f
erasing the effect of the last made move which noW lies' on a different branch.

_

w.

The. move also changes hands in this box. .

It will he, noted that we stepped down just one node instead of going

directly to the last previous.nove of the.loser. Box 271 which has no equiva-

lent in he tree search flow chart, checks, before resuming play, whether we

have in fact step,ed bdOk far enough. On exiting from Box 27 on F the option

of mev ng reposes with the loser and we proceed to -Box-28'.--- It must be remem-

beredbered ttlat°another,move is to be substituted. for the i
th

move. The last made _

ith move is therefore first removed from SUM in Bbx 28. PLAYi must not be

erased,here as the losermlust have a record of the last move he tried at this

point. --q
-,5.:

When the test is failed in Bok 25,'so that the lasiei-has no earlier moves
1

J
left to retract, the searc is ended an the res II is printe in Box 25 ( x 50..

1

i4

1,

The algorithm can,"of ourse, be modified to provid for the output of
.

,

additional information as esired. ..
u, ,--i.-
r.te,. - A

,

-."--; 'c.I

, Rei aliEg'the winning strategy of the g e of "31.'1.411 ruin it as a com...

.puter pr leRNbut we will whisper this strategy to the ache. You have a

winning osition if you can leave your opponent with th SUMeE 4 mod 9, or, if

possible,this is impossible, with,the SUM E OLor 5 mod 9 with a 3 sir 4 faced up. I
sti _ .

you can leitve youi. Opponept with such av:positian, he will be unable to do the'

same to you, nor will he be able to prevent you from again achieving such a

position on your next turn.

If the pl r recommended abovawil result in yodr exceeding 31, I then you

will be able instead to 'bring"the total to' 30 with a 1 faced up, which you do.

4

From tile bove it follows that if the initial roll is' 4, then the gamsOls

,won for the sec,won

firstly P1

/ '

/

d player. With any other initial role the game is won for 6he

),1r(;:.
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STUDY GUIDE IN DIGIT COMPUTING

AND

RELATED MATHEMATICS*

. THE URPOSE OF THIS GUIDE

Introducing the sutject of digital computers into'the high schools involves

knowledge, materials, and points of view that are at present not normally part

of the training of the high school mathematics teacher. In order that ths sub-

ject be introduced as widely and rapidly as possible, an in-servfte training

program is necessary. Teachers must acquire an understanding of the new con-

cepts ta use them effectively and confidently in the classroom.

The purpose of this Study Guide is to aid the teacher in acquiring a fam-

iliarity with digital computer concepts or'to further' his knowledge of the

field. The concept of an algorithm is stressed in the'suggested materials,

since it is basic to the mathematical solution of many problems. Ai algorithm

tea Its of ifittruCti-ons specifying a fiate sequence of operations whose

execution will yield the answer to a particular Obblem or class of,problems.

Algorithms may be stated in diagrams-11.c form.or as,,computer programs. The

programs are themselves sequences of operadtons'for-computer processing.

Colleges are stressing the algorithmic approach to mathematics:' Thus, it is

important that the high school student study this concept, whether he/writes

co ter programs bimot
' !

The use of this Gui e should not preclude the use of other sources

For example, theteacher would profit from a

1

"x) ramming,

laboratory experience with a

of essential to an understanding

eferably)taught at a college.

computer.

of the use

In s ch a

f in-

course in computer

course he would normally

Whilelcontact with the computer is
.

of the machine, it greatly enhances

the,training. In the event the teacher cannot conveniently enroll in a college
,

' course to strengthen his'atudy Trogram, he is urged to seek computer time °at a

nearby college or at a governmentor industrial research organizAion.
),,.

Professional and scientific organizations,...specifically the Association -to

Computing Machinery, are excellent sources of additional information and advice
.

...

on professionalr'educational, and vocational ale of computing. Members of

local chapters of. this organization are usually very helpful in providing advice
/

I

*This' Ludy guidewas.pubiished Originally by SMEG in, 1964. More recent titles.

Ihave-bieenadded for this publication. ,

I

'(C
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and even computer demXtrations. Further information is available, for ex-
_

A
ample, by writing to

,

11 I

j/4
Associat n for Computing Machinery

21 East 43 Street '

-4

New York 17, N.Y. .

This Guide may also serye school libraries.and mathemiics clubs in build-

ing a collection of digital computer reference materials.

2. DIGITAL COMIUtRR_TOPIDS________ 4

This Guide has been written to answer three questions about digital com-

puting and related mathematics:

a. What are the important topics to be Studied?

b. In what order should these be studied?

c. Where can information_be found on these topics? .

Several'topics are suggested ass, basic to an understanding of digital cots- -

puters. The first five of these, described in the next paragraph, have been

intentionally order* as they are.- If this order is followed, a continuity

will be developed-that should aid the beginner in this study. These five

topics are considered fundamental to a thorough study of the field. The final

three topics, described later, may be studied in any sequence an re of lesser

importange.

the r ferences begin with materitd on The Nature a d Organization of I

Digital Co uters.
*

The, capabilities of computers, the manner in which they

are rgani ed, and,the 'thane whereby information is stored in, them are con-

, sidered. en preparing a problem for computer solution, it is necessary to
, I

formulate an algorithm. This process, termed Problem Analysis, includes stating

the problem, electing a method, analyzing and visualizing it as a step-by-step ,

sequence of operations. In this latter process, emphasis is Placed on a flow-
,

chart representation, i.e., a diagram displaying the sequence of operations

comprising a procedure. The selected references stress this Noroach. Com-
.

puter programs are written in various programming la n ages. Some of these

languages consist of stateme s in a notation similar to ma4ematical formulas

and are termed Algorithmic ngua eS. References are gi en to specific,languages
I

of this type. The use of ap ropr ate problems for the e ression of computer

*Underlined phrases in these paragraphs are.uSed as topical headinga in the
body of,this Guide.

2,6
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concepts 15 an essential part of-gi course in computers.' As Additional Sources

of Problems, material is selected that contains Cully-worked problems for the,

classroom, Acing the relation between algorithms and computer programs.4In

)order to undAtand the nature of the problems that computers can
,

solve,* _ -..

,,,

1...

MathematiCs of Computation must be considered. References describe systems of

numeration, computer arithmetic, approximations, and methods in arithmetic for

the sol ution of problems to difficult to solve by cl ssical matheMatics.

These five topics constitute the concepts that should be studied in sequence.

There are..many Applications of Computer Systems in e variety of fields.
7---.7-

Material here includes readings in,such fields as engineering, physics, the

behavioral sciences, law, etc-., fog ile euxiclument, of a teacher's background. 6

Computer Operation, the manner in whic a computer operates to solve a problem;

is described in the next set pf refer ces. ,,Xetails of theiliqtruction-by-
. .,

instruction'execution of a program and the manner of programming at this level

of detail are considered. The final group of materials offers Non-technical

and Historical Views of the Computer;Field, providing popularied or historiCal 1,

literature. These references do not necessarily probe deeply into particular ,

1..

topics. These three topics are considered ok less importance than the fivd
vat

mentioned earlier. ,

110
.

Several topics are excluded from this Guide beca6e they are not directly

related to the concepts discussed. These include circ uit design, Boolean al-
,r

-gebra and circuit components.,:,
0

3. ORGANIZATION OF1THE GUI BE

To aid in the stuay of each topic; the Guide categorizes suitable refer-

ences. Each, is classified aq4central, peripHerall or adVanced:

a. A central reference is one containing material bearing directly on

the toptc and embracing the concepts des cribed here. This type of

reference is further classified:

A Primary cen4.al reference is one wh h is expected to

greatest value to most high school emetics teachlks.

A.secondary central reference is one of less value to teachers.

b. peripheral reference is one in Which the materi'al i specialize or.,:

of central.to the topic but touches upon it, or is s mewh t broader.

in scope than othe topic here defined.
n

S.
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c. An advanced reference contains material central to the topic but

which is writte* at a higher or more theoretical level.

At the end of the Stay Guide, all books are listed alphabetically by

author. It is recognized that the list.is not exhausiive.. Suggestions fore

appropriate .additions dre welcomed. f

1

:

4.

1

0
, _ 4

, ,.... . b.
.
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I. NATURE AND ORGANIZATION OF LOMPUTERS .

The manner in which agpflker is organized, with consideration of major

elements.

Central (Primary) References

HULL, Introduction to ^computing,/Ch. 2

LEESON AND DIMITRY, Basic Programming Concepts,'Ch. 1, PP. -9

SHERMAN, Programming and Coding Digital Computers, Ch. 3, Tp. 41-47;
pp. 63

SMITH, Computer Programming Concepts, Ch. 1,

SPROWLS, Computers--A ProgrammingProblem Approach, Ch. 12

VON NEUMANN, The Computer and the Brain, pp. 1-38

)A-
Central (SeFondary)References 414

.e..-14

HULL,"Introduction to Computing, Ch. 15

LRESON. AND DIMITRY, Basic Programming Concepts, Ch. 2, pp.' 10-21

'NCTM;Computer Oriented Mathematics, Ch.\2, pp. 19-27

.Peripheral References

,

GREENBERGER (editor), Management and ttie Computer of the Future,
Part 6, pp. 221-248 ,

of

II. PROBLEM ANALYSIS

Folmlulation of a method (algorithm) with emphasis on a.flow-chart

representation.

Central (Primary) References

ARDEN, An Introduction to Digital Computiiig, Ch. 4,,pp. 46-52

GAELER, The Language of Computers

'SMITH, Computer Programming Concepts, Ch. 2
r.

'iBULL, Introduction to Computing, Ch. 1

NCTM, Computer Oriented Mathematics, pp. 4-18, 59-101, 120-137,

ORGANICK, A FORTRAN Primer, pp. 31 -80

ORGANICK, A MAD Primer, pp. 43-87

SHERMAN, Programming and Coding Digital Computers, Ch. 2, pp. 17-40

.4 2.E392
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Peripheral References

.BORK0,:- ComputerAPplications in the Behavioral Sciences, pp. 114-118
. : (--
FROESE, Introduction to.Prograrring the IBM 1620, pp. 15-16 . /

GREENBERGER (ed.), Management and the Computer of tli. Future,

.,
Part 5, pp. 191-193; p. 211

,

Advanced Refe;ences

ARDEN, An IntToductipiu4o,Digital Computing

BRADENAND PERLIS, An IntvoductorSr Course in Computer Programming,

tRAKHTENBROT, Algorithms and Automatic,Coffputing Machines

I

ef

ALGORIT}4IC LANGUAGE

Introductibn.tospecific,languages.

Central Primary), References'

ALGOL .

ANDERSEN, IntrAdctiOnto ALGOL 60 't

BAUMANN et al', Introduction to ALGOL

MC CRACKEN, A.Guide to ALGOL Progra,dmink

FORTRAN

, o

s1,:t

HARRIS,' FORTRAN IT and IV Progxammit% .

'o-
HARVfLL, Basic FO TRAM Programing 14

HULL, 'Illitroduction to Computing, Ch. 4-10

MC ,CRAEN, A Gulde to" FORTRAN Programming

ORGANICK, A FORTRAN.Pilimer.,

SMITH, Computg'r Programming Concepts, Ch. 3,'pp. 12-16; Ch. 4-9

SMITIAND JOHNSON, FORTRAN Adtotester

OTHERS'

GALLER, The Language of Computers-(simplified version of MAD)

.ORGAN*, A,MAD Primer .,

SPROWLS, Computers--A-Progratmatog.ProblervApproach, Ch. 10,
' 11 (COBOL), Ch. 14 (PL /I) '

290
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Central '(SecondaryrReferences

ALGOL;,

SHERiMAN, Programming and Coding Digital Computers, Ch. 14.

FORTRAN

COLMAN AND 3YALLWOOD, Computer Language

GERMAIN, PrOgramming the IBM 162.0, Ch. 8-9 (GOTRAN)

TXPSON AND DIMITRY, Basic Programming Concepts and the IBM 1620
Computer,, pp'. 174-220

'k

MC CRACKENAND DORN, Numerical Methods and FORTRAN Prograimning,
7, 9, and Appendix 1

SHERMAN; Programming and Coding Digital,Computers, Ch. 14

OTHERS

MC GEE, The Formulation of Data Processing Problems for Com-
puters (in ALT, Vol. 44, tp. 3-21) (COBOL)

NCTM, Computer OFiented Mathematics, Ch. 2 (hypothetical
language) c-

Peripheral References

FORTRAN -

BORKO, Computer Applications in the Behavioral Sciences, Ch. 7,4'
pp. 124-132

,LRESON AND DIMITRY, Bas '\c Programming Concepts and the IBM 1620

Computer, pp. 326 -373

, Advanced References

ALGOL . r ' 1 /

DIJKSTRA, A'Primer of ALGOL Q Programming

FORTRAN

MC CRACKEN AND DORN, Numerica ethodi and FORTRAN Programming,
1.7 Ch. 8, 10, 11 4

OTHERAg("---.'

EN, An' Introduction tb gital omptting (MAD)

f
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?M.

) ,



IV. ADDITIONAL SOURCES OF PROBLEMS,o

Mathematical problems displayed with algorithmic language programs for\

their solution.

Central (Primary) References

I

-ARDEN, An Introductionto Digital. Computing, Ch. 4, pp. 46-52

GALLER, The Langilage of Computers

JOHASTON et al, An Introduction to yethematicS, Ch. 1, pp. 46-152

pcnat Computer Oriented Mathematics, Ch. 3.

ORGANICK, A FORTRAN,prtner, pp. 109-155 ,

00e;',A'MAD'PrTmer, p 181-238

Sur , Programming and Coding Digit,a1 Computers

SMITH, Computer PrOgramming Concepts, Ch. 10 (Vol 1), all pf Vol. 2

Central (Secondary) References

GRUEVBERIERANTrMa CRACKEN, Introduction to Electronic,Computers,
o (good examples'scattered throughout bookibut done in 1620

4, machine code)
'

LARSSON, E4ualities and Approxitatidis with FORTRAN Programming,
pp. 60-624 p. 104; p. 144

Advanced References

ARIEN, An Introduction.to Digi Computing, Ch.16, pp. 1314147;
Ch.. 12-18, pp. 161-344

05.1

BRADEN AND PERLIS, An Introductory Cou, rse in CoMputer proersmming,
81-121

: V. MATHEMATICS OF COMPUTATION

'Nuierical methods; error analysis;opproximations; computer arithmetic;

sYstemz of numeration.

Central (Primary) References

, , .,. r

ARDEN, An Introduction to Digital Computing, Ch. 7-8,
i

t.. -
' , . , .

,H.AITIS, .Numerical Methods ITSing, FORTRAN,. Ch. 8-9
N.,..

.KO H, Computer, -Oriented,
._

' NCTM, Computer Oriented Mathematics, Appendix A i

:

r.

--(Tii

I

t
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Central Seconaary) References

BORKO', Computer Applications in the Behavioral Sciences, Ch. 6,
pp: 62-11'

GOLDEN, FORTRAN IV,Programming and Computing

NCTM; Computer Oriented Mathematics, Appendix B

0 °Peripheral Reference
. .

I

. FROESE, Introduction to PrograMming the IBM 1620,,pp, .11-12

AdvanceeReferences

ARDEN, An Introduction to Digital Computing, Ch. 7 -10,' Ch,: 12-16

FOX, Introduction to Numerical Linear Algebra '

4
VI. APPLICATIONS OF COMPUTER SYSTEMS °A

eo.

Examples of the use of computers'in such fields,as engineering, sociology,

physicv,, etc.
.

, 1

i

...,

Central (Primary) References
, w

BAR- HILLEL, The Present Status-qf Automatic Translation of Languages
. (in ALT, Vol. 1, pp:, 92-157) -...,.,'":

% .

BORKO, Computer Applications in the Behavioral Sciences, Ch. 4, 9,
10, 13, 14, 23, 24,

, : ,

GOTLIEB, General-purpose progranking for business applications (in
ALT, Vol. 1,, pp. a-42)"

GREEN, Digital Computer.in Research, Ch. 6-13

LAWLOR, InformaI4on technology and the Law (in Ail, Vol. 3, pp.,'
. 299-352) .

,MG GEE, The formulation of data procegsing problems for computers ,4_ .n ALT, Vol. 4, pp. 152) l'
.

,. ,4.
SAMUEL,' Programming computers toaolay:games.(in ALT, Vol.

,

1, ,'

pp. 165-192)
'

SKRAMSTAD, Combined Analpg-digital teLniqhles in simulation (in
ALT, Vol. 3, pp. 275-298)

%
.

peripheral References
z

. .

. . - .

GASS, Rece4ir nt developments in linear programming (in ALT, Vol. 2,
il. 296-377)

e
, 1*

GREENBERGER, Management and th'e Computer of the Future, Ch. 2,
,pp. 36 -91 (decisionlmilking); Ch. 3,-pp..94,-130-(simulation pf
human thinking); al. 4, pp. 135-178.SinformatioA search and

',.,. retrieval) . '
^

. / ' 7
."1,44

- ,
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,dvanced References

BORKO, Computer Applications.in.the Beha;Tioral Sp/ences, Ch. 11, 12,

15,- 22

FEIGENBAUM, Computers and Thought

VII. COMPUTER OPERATION

I

The manner in which a digital computer operates -Co solve a problem.

Machine language concepts and programming are inclu'ded.

6.

.

Central (Primary) References

BORKO; 4mputer Applications ia'the4Behavioral SCiences, Ch. 5
.

DOLES, IBM 1620 Programming fol. Science
A
ancl Mathematics, Parts

Appendices

FROESE, Introduction to Programming the IBM 1620 I'Machine language

and SRS)

GERMAIN, Programming the IBM 1620

HULL, Introduction to Computing, Ch. 3

T,PFSON AND DIMITRY, Baltic PrOgramming Concepts and the IBM 1620 Corn-

' ) putei.,Ch. 2-14, ,pp. 22-173

NCTM, Computer Oriented MAthematics, Appendix A, pp'. 138-153

SHERMAN, Programming and CodingoDigitel Computers, C1. 3, pp. 47 -60

Central (Sefondary) References

ARDEN, An Introduction to Digital Computing, Ch.,1,5, 6

MCCORMIFS,' Digital Computer Primer (hypothetical computer)

NCTM, Compute', Oriented Mathematics,'Ch. 2, pp. 27-40 (hypothetical

computer),

SMITH, Computer Programming Concepts, Ch. 3

Peripheral References .

'CODD, Multiprogramming (in-ALT, Vol. 3; pp. 8-153)0.

=TIN, Multiple computer opersitions an ALT, Vol. 4, pp. 245-303)

ENGLEBARTIGames that teach the fundamentals of coouter operation

GREEN, Digital Computers in Research, Ch.. 15

GRUENBERGER AND MC CRACKEN, Introduction to Electronic' Computers

Advanced References

MC NAUGHTON, The theory 'Of automata, a survey (in ALT, Vol. 2,

pp. 379-421) ...
,

2 9



s:

, '
. p

VIII., NON-TECHNICAL AND,HISTORICAL VIEWS OF THE COMPUTER FIELD

Popularized or historical litelature in t

Central (PriMary) References ,

field

Mao

BERNSTEIN, The Anal7tical Engine: Coaputers--PaAj Present an
Futul-e

BCEKO, Computer tliztions in the Behavicral,ScienCes, Ch. 3
(history)

.

'

NCTM, Computer Oriented Mathematics, App4hdix E, pp. 198-200
(short history)

TOMPKINS, Computer education (in ALT, Vol, 4, pp. 135-168)

.VON NEIMANN,,The Computer and the Brain, Part,2, Pp. 39-82 (the
human neDyous system)

N

Central (Secondary). References,
/

DARNOWSKI, Coniputersr- Theory and Uses, Vol.v1,epp. 1-29, 61..70

0
Peripheral R'eferences

,

GREENBERgER, Management and-the Computer of the Futuie,
pp. 2-34; Ch. 8,:ko. 291-324

. '

Advanced References
-V

4

SHOULDERS, MicTo-electronics usinielectroll-beam-activated machining'
techniques (in -ALT', Vol% 2, gib. 137-293)

,o

C

.0;
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ANNOTATED BIBLIOGRAPHY`
\

ALT, F. L. (edito;); Advances in Computers, Vols. 1-4. New York:)' Academic`

Press, 196Q-1963. The articles in these booksrange from introducticins ,

for certain fields and suvaries of existing work in a, particular field
to quite technical paperg to be read pnly with an appropri9te background.
The fbllowing se;pction of twelve of these articlts has betn choSen as
particularly suiable for the-high school teacher.

BARR-HILLEL, Y.; The present status of automatic translation of languages
(Vol. 1,pp. 22-1577A survey of the field of.translation of
natural languages, e.g., French, describing the accomplishments of
"number of workers: Some of the problems encountered in natural
language translatfOn ire described in-an'appendix.

. ,

GOTLIEB, C. C., General-purpose programming for business applicatiOns

ipp : _Vol. 1, pp. 1-42).' A rapid, extensive overview of the business data
proCessing field containing a short introduction to programming,
systems; characteriti-cs of data processing problems;rtypica] data
processing,operations (sorting) Aiging, file handling).

SAMUEL, A. L., Programming computers to play gmed (Vol. 1, pp. 165-192).
Written in general terms without givin details of algorithms, this

frticle deals primarily with computer checker-playing, although it
Also discusses several approaches to'computer-chess-playing.

GASS,,,,S. I., Recent developments in linear programming (Vol. 2, pp. 296-

377). A survey of the field of linear programming (minimization of
a linear ftviion of several variables oiler a region defined by
boundaries specified by linear equations). iSeveral specific pro-
gramming lap.....aFe and some applic9tiOns are described.

MC.NAUGHTON, R.,'The theory of automata, a survey (Vol. 2, pp. 379-421).
Automata theory-.F=ding such topics as switching theerz, theory
of computability', and artificial intelligence) is treated starting
from a baSic level, defining fundamental concepts, aid proceeding
at a level appropriate for most teachers. -

SHOULDERS, K. R., Micro-electr cs using electron-beam-activated machin-
inetecnpiqueTTVa...21 pp. 1377793T. A lengtE7713(717iTrreport
on deviceethat may have considerable impact on computer design

technology. Thin film circuitry is described in great detail with__

emphaSis on novel manufacturicng.techniquqs.

CODD, E. F., Multiprogramming (Vol. 3, pp. 78-153). Multiprogramming is

. concerned with concurrency of operations within cc puter systems.
This article offers a thorough,-relatively non=technical introduction

to the subject. It requires no particular background.in a specific

programming laliguage.

LAWLOR, R. C., Information technology and the law (Vol. 3, pp. 299-52)
This article provides a brief look at the possible utilizat,ion of
computers toe aid in information retrieval in the,field of law. In

addition, the article shows how Supreme dOurt decibionsmight be
.4predicted by the computer, using information on past decisions.
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SKRAMSTAD,y. K., Combined analog-digital techniques in simulation (Vol. 3,
pp: 275-298). The kinds of problems bebt handled on such'a system
are described; some equations are soloed on each of the two types.
Examples are given. The problems with such a system are described.

CURTIN,-W. A., Multiple computer operations (Vol. 4, pp. 245-303). A
descriptfbn of general concepts for the design, programming, and
scheduling of multiple computer systems. Existing multiple computer_

A...systems are reviewed.
.

MC GEE, W. The formulation of data processing problems for computers
(Vol. 4, pp. 15-52). -A review of recent developklents in certafn
areas of data processing: the characteristics of data processing
languages (COBOL et al), organization and description of data, and
some beginning attempts at a theory of. data processing.

TOMPKINS, H, E., Computer education (V61. 4, pp. 135,168)..A description
of the efforts toward computer education at the college and high
school"levels with emphasis on the former. A few comments are given
or programmed insiruction:

ANDERSEN, C. An introduction to ALGOL 60. Readiiig, Mass.: Addison-Wesley,
1964. 'A clear and very briefliescription of the language ALGOL. The
reader is assumed to have-a basic knowledge of step-by-step logical
_processes' and 'repetitive 'operations. The features of the language are
introduced gradually and in a natural and convenient order. Individual
features are illustrated well by examples.

ARDEN, B. W. An Introduction to Digital Computing. Reading, Mass.: Aadison--
Wesley, 173. This book for the scientifically-minded reader is an
excellent introduction.to.digital'computifig. 'About one-half of the book
is devoted tb a, detailed exposition g the subject of numerical analydis.
Many numerical techniques are illustntted bir algorithms'expressed in. the
MAD language. The book also.contains an excellent chapter on numerical.

.'riethods and a final chapter which-describes the programming of "a siqle
compiler". In addition to an introduction to MAD, a basic approach to
machine organization is given.

BAUMANN, FELICIANO, BAUER AND SAMELSON. -Introduction to'ALGOL. Englewood
Cliffs, N. J. Prentice-Hall, Inc;,, 1964. 'An excellent, exceptionally
clear and concise textbook on the language'ALGOi6 Well-suited for use as
a reference,work as well (includes revised report on ALGOL 60 as appendix).'
Assumes a knqwledge, of the basic ideas of step-by-step logical procedures
and repetitive processes.

BERNSTEN, J. The Analytical Engihe: ComPuters--Pa'st, Present and Future.
New York: Random House, 1964.. This highly readahleITETre hooTTTZ
pages) first appaared as a series of articles_in the New Yorker. Any _,-

reasonably.literate person could enjoy it as popular historical. background.

BORKO, R. (edit9r) Computer Applications in the Behavioral Sciences. Englewood
Cliffs, N. J.: Prentice-Hall, Inc., 1962. Although comprised principally
of a col4etion of 17 reports covering a wide variety of computer applica-
tions to thebehavioraliApiences, tr-lis'book also contains a 14O -page in-
troduction to computing Nachpresup#oses nb prior"knowledge. The research
reports, while not easy reading, should berewarding for the teacher .who
wishes to de e further into any of the topics.

9
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BRADEN AND PERLIS. 'An Introductory Course.in Computer Programming, This is
'Monograph No. 7 of the Discrete Systems Concepts Prdjects funded by-the
National Science Foundation and written at the Carnegie Institute of
Technology, Pittsburgh, P'enna,. These,course notes, not commercially dis-
tributed, are for an introductory course primarily involved with ALGOL.
They are well written and contain many fine exercises as well as an en-
lightening exposition of data structures., . .

COLMAN AND'SMALL400D. Computer Language--An Auto - instructional Introduction

to FORTRAN. New York: McGraw -Hill, 1962. An introduCtory manual (in a
rather unusual format) to a sulZet of the language FORTRAN.

DARNOWSKI, V. S. Computers--Theory and Uses (teaching unit and teachers'
'guide). Washington, D. National Science Teachers Association, 19 1 .

Limited editions -- revised edition to be offred for sale at a.laterdate.

- DIJKSTRA, E! W. A Primer of ALGOL 60 Programming. New,York: Academic Press,
1:>O2. A brief, well:written readable presentation of.ALGOL 60 to readers
already familiar with some compiler 1 aguage. Special features of the
implementation of the language for the Mathe tical Centre, Amsterdam, are
presented.

DODES, I: A. IB{ 1620 Programming'for Science and Mathematics. New Yqrk:

Hayden Book Co., 1)63. Of interest primarily to those who have access to
a 1620 computer, this is at in 1626 programming, 'or good 12th grade
students. It is no-6,an intro ction to the overall fiel of computing,
gut treats numerical-analysis,..machine language and Symb 3Ac,programming,

and--briefly--FORTRAN.

ENGLEBAEly D. C. Games t#at teach the fundamentals of computer operation, IRE
Transactions, Vol. E.C.-10, No. 1, March 1960. This paper instructs a.
'temiker in the Ulealforilaying a game using,up to 20 students for sim-.

dilating various ihiab of simple computer elements. Each'individual
a

watches the up-down hand positiom,of one or two others and adjusts his
hand pOsition to a response task wtich is equivalent to an AND, og, NOT,
or flip-11,3'p. Counters, shift registers, and adders may to organized in

this way.

FEIGENBAUM AND FELDMAN Computers and Thought. New York: McGraw-Hill, 1963.

A fine collectibn of twenty research reports on Artificial Intelligence
(programming computers,torperform.intellectual tasks such as game-playihg, .

theoem-proving etc., in the same' way that persons'might performi*these,
tasks) and Simulation of Cognitive Processes (construction,of computer
models to aid in understanding' the information processes underlying , '-

human behailbr)'. .

FOX, L. introduction to Numerical Linder Algebra Oxford: Oxford University

Press, 1964. A sound, readable account, most at the level of inter-
iediate-elgebra, of the numerical methods used in the solution of liners
equations, matrix inversion, and.the'eigenValue problem..

PROESE, C. Introduction to Programing the IBM 1620. Reading, Mass.: Addison-.

Wesley, 1964. Of interest only for those who have adcess to aa_IBM 1620

-, computer. Emphasis on operation, feeding' infOrmat/on into the machine,

machine language and symbolic programming:'

1
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GALLER, B. A. The Language of Computers. New York Mc=Graw-Hill, 162. An
-

excellent introduction to the structure and use of a maenine-independent
algorithmic language (a simylified version of MAD), The language is in,.
ti-oduced graduhAlr, employing examples together with solutions given both
byflow-chart and MAD-program. A complete answer book is available on
equIst from the publisher.

GERMAIN, C. B. Programming the IBM ,1620. Englewood Cliffs, N. J%: Prentice-
Hg11,'1962. A text for a,first course in programming with emphasis upon
the oleration pf the'1620 (assumed to be available) and the use of machine
language and symbolid coding.

. .

GOLDEN, J. T. FORTRAN IV'Pr6grammiqg and Computing. Englewood.Cliffs, N. J,:
Prentice-Hal1,49657 A development of the 'FORTRAN IV language. It differs
from some cif*lit.o rs in its heavier use of mathematical examples. The
matkematics is gt the yearly college level, and should give teachers"' some

. ideas for examples d exercises.

GREEN, B. F..,/Jr. Digital Comuters in Research. New York: McGraw-Rill, 1)03.
Th4,abook is of interestSprincipally for the applications in Part
Many of these problems in the behavioral sciences are treated rather
lightly and can be profitably read without attention to Parts I and II.

GRE'ENBERGER, M. (editor) Management and the4Comiulter of the Futre. Cambridge,
',Mass,: --M.I.T. Prt,sa, 1962. In nOite of its misleading tit e, thip col-
lection of eightJlectures (with. accompanying 'discussion) co tains much,
background, material: of- special interest to high school teach rs and stu-
dent. (Not a textbook,)

.

GRUENBERGER AND MC CRACKEN.' Introduction to Electronic Computers. New York:
John Wiley, 1963. jA good .IBM 1620 machkae-language programming text

isuitable for 12-th grade-students having access to a 1620 ...'omputer. A
very good presentatidn of basic and important (but highly machihe-oriented)
material.

HARRIS, L. D. FORTRAN'II and IV Programming. Columbus,. Ohio: Charles E._
Merr...ill,'1964. -This book contains a brief introduction to FORTRAN.'s
Emphasis is on a simple sutset of FORTRAN. This material is reprinted
in the. same author's text,,Numerical Methods Using FORTRAN.

HARRIS, L. D. Numerical Methods Using FORTRAN. Columb4s, Ohio: Charles E.
4 Merrill., 1964. This bdok attempts a marriage of programming and numerical

methods for the engineer or scientist. Although the presentation of
FORTRAN is quite readable, the book is primaria of interest for the

t problems in Chapters"8 and 94

HARVtLL, J. B. Basic FORTRAN Programming. Englewood Cliffs, N.'J.: Prentice-
Hall, 1966. An interestinglintroduction to a small version 9f FORTRAN
(essentially FORTRAN II without format details): Written in an elementary
style and emphasizing thd,usefulness pf flow diagrams throughout, this
gook should be attractive to students. .The aor introduces an inter-
esting techniqUe for watching the changes of pirtinentfstorage areas over
'time, called the Memory Chart.

HULL, T. E.' Introduction to Computing. Englewood Clifhfs, N. T.: Prentice-
liall, 1966. 12 readable introduction to compdtingvia FORTRAN IV, with
several non-numerical examples in the'later chapters. The bibliOgraphy
in Appendix A is veil good.
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JOHNgION, PRICE AND VAN VLECK. AL,Introduction,to Mathematics, Vol. 1, Parts
and 2. Lawrence, Kansas; Department of .14Athi,71Tie University of

Kansas, 1963.. This book is part of a mathematics text for the UniVersi,ty
freshmat%'-Only pages 4.-152 are of interest to this studyguide. In

that segment of the book the basic concepts of flow charting and program-
ming an algorithm (in an informal langudp.similar to ALGOL) are presented ,

in the context of solving systems of linear equations: 2 x 2, 44x 5, and
m x n. This section is recommended as an example of a quite,detaied algo-
rithmic solution of a problv, not as a text.

_

KOVACH, L. D. Computer-Oriented Mathematics.' San Francisco.: Holden-Day, 1964.
A small book, easy topread. It is concerned with such computer - oriented
-topics as approximattions, itetation, Monte.Carlo methods, etc., There is
no computer programming here, just the mathematics.

o
_

LARSSON, D. Equalities and Approximations: With FORTRAN Programming.
New York: John Wiley add Sons, Inc., 1963. The teacher who knows FORTRAN'
can find in this book a few pl-oblems in mathpmatics programmed in FORTRAN

I (basic fOrmatless FORTRAN for thegIBM l6g0)..

LEESON AND DIMITRY. Basic Programming Concepts and the 'IBM 1620 Computer.
New York: Holt Rinehart and Winston, 19(2. This text is a complete
treatment of programming tile 1620 "with tailed emphasis ot,Machite
language and symbolic coding. A brief probably too lrief for use by a

A.-beginner) but accurate presentation of 1:620 FORTRAN I is given.

mc-coRmIgx, E. M. Digital Comput _Primer. New York': McGraw-HilL.Book'Co.,
1959.. The person early comp tent in the area of aogramming and,who
wishes to delve into how computer work intern4lly and how they are

415designedcan find in this book a brief treatm t of arithmetic and logical
units, input-output devices and related topics.

MC CRACKEN, D.D. A Guide to AWOL Progr ng New,York: John Wiley and'
Sons, Inc., I9b2. This is a well -organ ed introduction to the language
ALGOL, including tine-case-study examples eac carrying a problem -from .44,

the original statement through the completed AI OL program.
. )

MC CRACKEN,' D. D. A Guide to FORTRAN Programming. New York: John Wiley, 1961.

A brief (38 pages introduction to FORTRAN programming for the_person who
wants to get a rapid grasp of the language.

AMC CRACKEN AND DORN. Numerical Methole and FORTRAN Progr rig. New York:

7 ,John Wiley,_164. A very readable book providing en a, quate description
of FORTRAN and a good introduction to a well-selecte-d-get of topics in
numerical analysis. Aimed at under-graduatts in science and engineering,
many parts of the book are likely to betoo advanced to suit the needs of
the high school teacher. However, the leacher with adequate mathematical
backg ound will find much of the materiel,Aseful for his own enrichment
even hough most of it will be beyond tb reach-of-his students.;"',

NATIONAL COUNCIL OF TEACHERS OF MATHEMATICS. Computer Oriented Mathematics,
An Introduction for Teachers. Washington -7757777 N.C. .M.,1963. This

book has an excellent plan as at introduction for t ers. Its purpose.

is not, to teach,the idea of a'domputer as an Rnd in self, but rather to
motivate the sti.dy of mathematics by drawing uton the appeal and power of

computers. In'order to attain this goal, certain problems of mathematics
are selected which cat be solved'appropriatelylon a computer. Emphasis ,is

placed on the grganiietfon of solutions into logical step -by -step processes,
the use of flow-charts, and op the repetitive capabilities of computers.

,
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ORGANICK, E. I. 'A FORTtAN Primer. Reading, Mass.: Addison-Wesley, 1963.
This is one of the most complete and well-organized FORTRAN texts avail-
able._ It uses a comprehensive set of exampless.n?drill exercises
independen( of any discipline. fts completeness and thoroughness in
treating ta.differenceS between FORTRAN processors on various machines
mdy make this, book more suitable for a course taught by a teacher with
previous knowledge of FORTRAN than fox self-study.

.

ORGANICK, E. I. A MAD Primer. Ann Arbor, Mich.: Ulrich's Book Store, 196h.
This book does for the MAD language precisely what the author's A FORTRAN.
Primer does for FORTRAN.

SHERMAN, P. M. Programming and Coding for Digital Computers. New York: John
Wiley, 1962. An excellent ,comprehensive source book of information on
basic computer concepts add on computer programming, including numerical
scientific applications, business data processing, and non-numerical
Applications. Probably more useful to the high school .teacher as a
reference Work than as a'text.

t.

SMITH,0R. E. Computer Programming Concepts. (Reference material),
'VOI. 2 (Problem exercises). Minneapolis, Minn.; Control Data Corp., 1963.
An excellent introduction to the basic concepts of computers at.a.level
easily understood by high school students. Emphasis is on VIORTRAN as used
with the Control Data 160-A Computer. Well-selected examples with a lib-
eral sprinkling of humor,.

1 'METH AND JOHNS04. FORTRANAutotester. New York; John Wiley, 1961. An excel-
-lent intrOdection to FORTRAN, particularly if a_computer iatnot available,
for program'check-out during the course of study.' yanimal use of flow-
charts. Exceptionally well-suited to a brier self-instructional initia-
tiOn"'-to the FORTRAN language.

SPROWLS, R C. Computers--A Programming Problem Approach. New York: ,Harper

5
and Row, 196.:-A good treatment of several languages, such as FORTRAN,
COBOL, and PL/I. Many examples, with emphasipon flow diagrams. The
accompanying instructor's manttal contains a great deal of teaching phil-'
osophy and insight into the author's teaching methods. Thts booNliel be
useful primarily for the teaCher.

TRAICHTENBROT, B.'A. Algorithms and Automatic Computing Machines. (Translated
fromtl* Russian edit;An-066)77ITEE: D. C. Heath and Co., 1963.
This'book is.doncerned.nith the theory of algorithms. Ft requires no
specific information/from other branches of mathematics beyond inter-
mediate algebra. The subject matter is deep and the treatment is rigor-

, ous, requiring the reader to follow a rather compleX train of logical
thought, but the author has done an excellent job of making the ideas as
accessible 4 possible. The basic ideas are introduced very carefully,
and gradually, and they arevery Well motivated.awkecommended for the'
teacher who would like to follow up some of thelqical and philosophica,
implications of computing.

VON NEUMANN, J. The Computer and the Brain. New Haven: Yale University Pressi
1958. ,`this excellent book, although not intended as a textbook, is rec-
ommended to the teacher as an historically oriented account of the organ- t

ization of computing machineq. The second part of the book discdsses
analogous properties of'the human nervous system,
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